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Introduction: eTRIKS and Translational Research 

Information Sciences 

Jay Bergeron 

eTRIKS and the drive for sustainable translational research information 

management practices  

Translational Research (TR) provides novel insights into disease progression and 

classification, biomarker discovery and patient stratification through the collection and analysis 

of traditional clinical observations coupled with corresponding large scale molecular and 

digital biomarkers. The discipline seeks to reduce the attrition of investigational new drugs 

during clinical development and accelerate the timelines associated with clinical programs. TR 

projects depend heavily upon Knowledge Management (KM) capabilities and services that 

provide study data to project investigators for exploratory analysis.  

 

The European Translation Research Information and Knowledge management Services 

(eTRIKS) was an Innovative Medicines Initiative (IMI) consortium that operated between 2012 

and 2018 comprised of ten Pharmaceutical companies, four academic institutions, the Clinical 

Data Interchange Standards Consortium (CDISC), IDBS (a leading scientific software 

company) and Biosci Consulting (specialists in developing and managing biomedical 

consortia). eTRIKS was launched to establish information platforms and services to promote 

data and process harmonization across TR programs operating within the IMI and other Public 

Private Partnership (PPP) frameworks. eTRIKS sought to reduce the operating costs and 

accelerate information system implementation for TR projects. Additionally, the collaboration 

sought to maximize the use and value of the research data generated by these projects through 

harmonized data standards and processes, scientific data analytics, data reuse policies and best 

practice consulting. 

 

The eTRIKS consortium delivered a core TR KM software platform, TR analytics applications 

and a wide variety of value-added best practices that impacted over sixty client projects 

throughout the course of the collaboration. The consortium’s assets are available, by and large, 

under open licensing. The application of eTRIKS best practices continues through the work of 

the eTRIKS commercial spinoff Information Technology for Translational Medicine (ITTM), 

the eTRIKS Data Sciences Network (eDSN) and the many adopters of eTRIKS’ products and 

services.  

 

The information, recommendations and guidelines presented in this book are the direct result 

of six years of intense efforts by over one hundred individuals affiliated with the eTRIKS 

consortium. The eTRIKS deliverables, including software development and integration, 
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analytic method advancement and implementation, data standards consolidation and 

application, contract management and legal and ethical discourse constitute a comprehensive 

set of products, services and best practices to expedite TR endeavors while limiting liability 

and uncertainty with respect to handling the information gathered from study participants. 

 

eTRIKS has created or extended many products and services that have been applied to client 

translational research programs. The following section describes the major deliverables.  

 

eTRIKS Translational Research Information Platform 

The eTRIKS translational research information platform is based on the open source 

tranSMART translational research data warehouse created by Johnson and Johnson (J&J) and 

released open source under the GNU Public License version 3 in 2012. eTRIKS released five 

major platform versions throughout the course of the collaboration. The eTRIKS platform 

incorporates an open source database system which greatly promoted the distribution of the 

platform within academic and non-profit institutions. Many open license analytical 

applications such as Galaxy for supporting bioinformatic methods and XNAT for bioimage 

management were made interoperable with the eTRIKS environment. The platform was 

extended substantially through custom software development to enhance the visual and high-

performance analytical capabilities of the tranSMART system. The final version of the 

platform introduced complicated cross study analytic and longitudinal data support capabilities 

as well as a new user interface to exploit these advanced features. 

 

eTRIKS Public Platform: eTRIKS deployed and hosted a publicly-accessible eTRIKS 

Translational Research Information Platform (available at 

https://public.etriks.org/transmart/datasetExplorer at the time of this writing) that exposes 

roughly 200 clinical studies curated to eTRIKS’ standards across a wide breadth of disease 

areas. Additionally, the Public Platform serves as a demonstration and training environment 

for investigators interested in evaluating the eTRIKS platform. 

 

eTRIKS Labs 

The eTRIKS Labs (https://www.etriks.org/etriks_labs/) concept arose out of a desire to 

centrally brand and distribute eTRIKS’ custom software applications and analytical methods. 

These applications and methods were developed and deployed to either directly extend the 

features of the eTRIKS platform with or to complement the platform with cooperative abilities. 

All eTRIKS Labs are provided open license to the research community. The eTRIKS Labs are 

comprised of the following assets: 

 

● eTRIKS Analysis Environment (eAE): A high-performance compute scheduler that 

enables investigators, and their applications, to launch analytical jobs against associated 

compute clusters. Jobs can be launched using integrated Jupyter Notebooks. The eAE 

software deployment is decoupled from specific high-performance compute cluster 

implementations. As such, the eAE can be installed and operated, in principle, on any 

https://www.etriks.org/etriks_labs/


Concepts in Information and Knowledge Management for Translational Research 

 

cluster configuration. 

 

● eTRIKS Harmonization Service (eHS): A system that facilitates the challenging 

manual data transformation and mapping process employed to populate the eTRIKS 

platform with study data. The highly variable nature of data collected during clinical 

studies complicates its incorporation into structured data warehouses such as the 

eTRIKS platform. The eHS provides a user interface to accelerate the configuration of 

clinical data collections and provides certain automated mapping capabilities. The eHS 

transformations are based on the industry standard Clinical Data Interchange 

Consortium Standards (CDISC, https://www.cdisc.org/ ). 

 

● Hi Dome: An application that allows eTRIKS platform users to select cohorts using 

values of high dimensional datasets, such as gene expression, and to determine 

statistically significant differences between the cohorts based on these high dimensional 

results (e.g. as significant differences in the expression of one or more genes between 

the cohorts). Hi Dome is a natural high dimensional extension to tranSMART’s baseline 

clinical data analysis capabilities. 

 

● Disease Knowledge Base: A semantic query application for molecular pathways 

created using the open source Neo4J (https://neo4j.com/) graph database engine 

leveraging the natural fit of semantic/graph databases to better support the data structure 

of molecular networks. Molecular pathways structured as triple store relations can be 

searched using Neo4J’s Cypher query language and presented visually with the 

corresponding information associated with each molecular entity that participates in the 

network.  

 

● Disease Maps: eTRIKS extended disease pathway maps related to Asthma and 

Parkinson’s Disease working directly with information known a priori and data 

generated by client projects. Additionally, supplemental tools were created to accelerate 

the modeling of these disease maps from underlying disease-associated data. 

 

● Similarity Network Fusion (SNF): An R-Shiny (https://shiny.rstudio.com/) 

application that was developed to provide an operational user interface for this novel 

computational method for genomic data integration (developed by Wang et al., in the 

lab of Anna Goldenberg (http://compbio.cs.toronto.edu/SNF/SNF/Software.html)). 

SNF constructs patient similarity networks based on a diversity of associated data types 

and, in a second step, iteratively integrates the individual patient networks until the 

algorithm converges to a final fused network representing the population. 

 

● Weighted Gene Co-Expression Network Analysis (WGCNA): An R-Shiny 

application was developed to provide an operational interface for performing 

correlation network gene clustering analysis using the method implemented and 

https://www.cdisc.org/
https://neo4j.com/
https://shiny.rstudio.com/
http://compbio.cs.toronto.edu/SNF/SNF/Software.html


Introduction 

13 
 

published by Langfelder and Horvath 

(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/). 

 

● Patient Input Platform: eTRIKS created a discussion game framework, based on the 

open license Play Decide platform (https://playdecide.eu/), to assist patients and 

legislators in navigating the risks and benefits of consenting their individual health data, 

or the data of their constituents, to promote biomedical research. A series of game cards 

were created that present questions aimed at spurring open discussion with respect to 

the topic of medical data reuse. With the help of a facilitator, groups of people work 

together to formulate/reassess opinions regarding the risks and potential benefits of 

health data reuse. Applied in multiple sessions with patients, legislators and medical 

professionals the favorability of medical data sharing was consistently raised among 

these key stakeholders as a direct result of these sessions. 

 

eTRIKS Standards Starter Pack 

The selection and application of consistent data standards is critical for enabling high quality 

data review and analysis. Moreover, consistent data standards facilitate meta analyses across 

studies and increase opportunities for data reuse. The Standards Starter Pack documents the 

best practices for optimizing the quality and usability of exploratory medical data loaded to the 

eTRIKS platform. Tailored for project leaders and data managers, the resource provides a 

comprehensive review of pertinent biomedical data standards including guidance as to which 

standards platforms are best suited for specific research plans. The Standards Starter Pack 

documents were made available for all IMI projects to promote consistency in data handling 

and to raise awareness of the potential advantages of applying consistent standards across 

translational research projects. The Starter Pack was the basis for eTRIKS project consulting 

with respect to standards implementation. Multiple extended versions of the Standards Starter 

Pack were released to the public domain. 

 

eTRIKS Code of Practice on Secondary Reuse of Medical Research Data 

The Code of Practice provided multi-partner, multinational scientific research projects with 

urgently needed practical guidance for conforming to applicable data protection laws, 

particularly the European Data Protection Directive which was in force at the time the code of 

practice was developed and initially released in 2014. The Code of Practice was adopted by the 

IMI, for all new projects, as the base level guideline for the design of ethical practices and 

policies regarding the appropriate use of patient data. The relevance of the Code of Practice 

was lessened once the General Data Protection Regulation (GDPR) became law in May of 

2018. The Code of Practice was the basis of eTRIKS consulting with regards to ethical data 

use. eTRIKS team members consulting on legal and ethical considerations also became highly 

knowledgeable with respect to the GDPR statutes to assist clients with necessary process 

changes once the GDPR became law. The BBMRI-ERIC GDPR Code of Conduct (http://code-

of-conduct-for-health-research.eu/), has replaced the eTRIKS Code of Practice. 

 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://playdecide.eu/
http://code-of-conduct-for-health-research.eu/
http://code-of-conduct-for-health-research.eu/
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Data Catalogue 

eTRIKS created the first broadly applicable Data Catalogue (https://datacatalog.elixir-

luxembourg.org/) for datasets associated with IMI projects as well as other published sources. 

The Data Catalogue provides a searchable metadata repository that encompasses a wealth of 

cross-project study information allowing investigators to quickly find and assess datasets 

pertinent for their research endeavors. The Data Catalogue is a web-based product implemented 

using the Open Source CKAN (https://ckan.org/) data portal software and affords end users the 

opportunity to interactively search and display study metadata and summary information across 

the managed study collection. 

 

Materials Transfer Agreement/Confidential Disclosure Agreement Templates 

Material Transfer Agreements (MTAs) are contracts that define policies and responsibilities 

regarding oversight of the exchange and use of intellectual property (IP) between two or more 

parties. MTAs were generally necessary for eTRIKS to provide comprehensive services to 

client projects (research data being the pertinent IP for eTRIKS engagements). The MTAs 

between eTRIKS and the IMI projects ABI-Risk and Oncotrack each required approximately 

two years of negotiations to close as all individual partners across the contracting consortia 

were required to authorize the MTAs as signatories (The ABI-Risk consortium alone required 

over 40 parties to negotiate MTA terms). The experience of contracting across these large 

public private partnerships was codified into an MTA template containing the basic collection 

of terms and clauses pertinent to materials transfer. The template should accelerate the 

negotiations and subsequent execution of future MTAs. A similar template was created for 

Confidential Disclosure Agreements (CDAs) which were pertinent to eTRIKS project 

engagements. CDAs for IMI projects can be brokered via the project coordinators (serving as 

the signatory on behalf of all consortium participants), thus greatly reducing the time and effort 

to close a CDA relative to an MTA. Nevertheless, the availability of the CDA template should 

further ease the time and costs associated with commissioning multi-project engagements. 

 

eTRIKS Training Materials 

eTRIKS personnel provided many training sessions throughout the course of the collaboration 

as part of WP6 outreach and promotion efforts. Topics codified into training programs and 

materials include: 

 

● Platform installation and support 

● Introductory guide for new platform users 

● In depth training for advanced platform users 

● eTRIKS reporting (defect management and support services) 

● Building new interfaces with the tranSMART API 

● Data Privacy and Reuse 

● Application of Data Standards 

● Introductory Data Curation and Database Mapping 

● Advanced Data Curation and Database Mapping 

https://datacatalog.elixir-luxembourg.org/
https://datacatalog.elixir-luxembourg.org/
https://ckan.org/
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● Electronic Case Report Form design 

 

The training materials that were developed for these sessions are not distributed under open 

license. Rather, these materials are distributed through agreement with BioSci Consulting to 

support commercial services that enable the use of eTRIKS assets. 

 

eTRIKS Website (https://www.etriks.org/) 

eTRIKS.org provides information pertinent to the consortia as well as access to the eTRIKS 

assets that are distributed under open license. All assets discussed in this section are available 

through this website as of the time of this writing. 

Enhancing the value of data for medical research 

Developing application infrastructure and corresponding best practices to the magnitude 

accomplished by eTRIKS required a highly focused effort by a large group of diversely skilled 

individuals. However, the preferences of prospective clients were, of course, critically 

important. Academic clients, either acting as a single project team or within the context of a 

public private partnership, were the key customer groups targeted by eTRIKS. The willingness 

of academic customers to partner with eTRIKS and make use of the open license applications 

that eTRIKS produced resulted in the large portfolio of community products and services 

outlined above. These assets are the inspiration for this book, and many will be detailed within 

the subsequent chapters. The authors hope that readers, especially those clinicians, analysts and 

technologists who assemble to prosecute translational research programs, will find the content 

presented to be informative for the design, implementation and execution of their studies and, 

ultimately, the use of their data to realize medical breakthroughs for patients worldwide. 

Readers should note this book has not been directly peer-reviewed. However, much of the 

content presented herein is published elsewhere within peer-reviewed journal articles. The 

content of chapters four, six, seven and nine were published prior as part of successful 

dissertation and Capstone submissions and have, thus, been scrutinized by expert faculty. The 

content of chapter eight is reprinted from peer-reviewed articles pursuant to terms of licensing 

for the convenience to the reader.

https://www.etriks.org/
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Chapter 1: Clinicians and Data Science 

Yike Guo, Scott Wagers and Mansoor Saqi 

1.1 Why should clinicians study data science? 

Medicine is increasingly becoming data-centric. Large scale patient datasets, including genetic 

and molecular profiles capable of assessing hundreds of thousands of markers, were once solely 

the purview of biomedical researchers. These investigators seek, through carefully designed 

clinical studies, to understand and, ideally, interrupt the mechanisms and progression of 

specific human diseases. However, technological developments that have substantially 

decreased the costs of individual molecular profiling, coupled with the medical knowledge 

realized from the use of these technologies in disease research, has led to the application of 

molecular insights for diagnosis and medical intervention with respect to individual patients. 

Moreover, the advent of digital biomarkers such as those derived from medical images and 

wearable accelerometers will provide further opportunities to collect large scale medical 

datasets from patients and use these data to better individual health. Of course, the collection 

of these data does not, in and of itself, benefit patients. Digital and molecular biomarker 

analyses depend upon sophisticated mathematical processing methods applied in concert with 

robust computational environments on which these methods operate. Although it is not 

reasonable to expect that every practicing physician to also be an expert computational scientist 

and bioinformatician, clinicians will need to increasingly consider and incorporate digital and 

molecular biomarker test results into the medical assessments and treatment plans of their 

patients. A familiarity with pertinent data science methods will promote the effective 

integration of large-scale biomarker results with traditional medical assessments regardless of 

whether the biomarker results are delivered to the physician directly via software or through 

consultation with medical informaticians. 

  

In a paper in the NEJM1, Obermeyer and Lee argue that medicine will need to embrace these 

developments and clinicians trained in statistics and computer science will have important 

roles. Physicians will need to appreciate and leverage the following elements of individual big 

data and information dissemination. By doing so, physicians will be better able to act as 

stewards of their patient’s healthcare and to demystify the confusion that many patients may 

experience regarding when, and how, such data should impact medical intervention for 

themselves or their loved ones. Certain factors are pertinent to this work: 

 

● Availability of large-scale databases of molecular profiles and electronic health records, 

whether provided anonymized to the public domain or restricted to select users through 

commercial, or other, arrangements 
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● Complex machine learning methods for analyzing large collections of patient data and 

using these learnings to inform individual patient diagnosis and treatment 

● Patient communities formed to share experiences and information with respect to 

shared medical conditions 

● Patient-directed data collection and interpretation (not ordered by a physician) such as 

personal genome sequencing 

● Internet-based and direct-to-consumer availability/marketing of health information and 

therapies which may both empower, as well as inappropriately bias, patients 

 

These factors are changing the dialogue between doctors and patients2 while biomedical data 

scientists continue to leverage these factors to advance new therapeutics and healthcare 

protocols. This dynamic broadly impacts healthcare stakeholders including patients, providers, 

biomedical researchers and funders. 

1.2 Towards a new taxonomy 

Many medicines sometimes fail to alleviate the medical conditions and associated symptoms 

experienced by the patients for whom these medicines are prescribed.3 A recent study of the 

top ten highest grossing medicines in the US suggests that only between 4% and 25% of 

patients benefited from drugs3 that they were prescribed. Complex diseases, such as cancer and 

inflammatory syndromes, that give rise to similar physical symptoms across patients are often 

caused by underlying molecular mechanisms that are distinct to individual patients. Thus, 

medications that are highly effective for certain patients may have limited, or no, efficacy for 

other patients due to mechanistic heterogeneity. 

  

Consider, for example, Asthma, a chronic lung disease characterized by obstruction of the 

aveoli due to inflammation that can lead to permanent tissue remodeling. Asthma causes 

substantial suffering for those afflicted and carries a significant societal disease burden. The 

disease is usually managed by administration of corticosteroids; yet, some patients do not 

respond well to this treatment, even at high doses. Asthma is described as a heterogeneous 

disease as patients diagnosed with the disease can present varied clinical symptoms (a.k.a 

phenotypes) such as the presence of remodeled aveolar pathways. Additionally, patients can 

present characteristic molecular profiles, such as differences in the expression of gene sets in 

tissues pertinent to the disease. Such molecular phenotypes are more likely to definitively 

describe the subtype of the disease responsible for the patient’s pathology and will more 

accurately inform a treatment plan tailored for the patient’s specific circumstance. The 

identification of molecular subtypes can also reveal commonalities between diseases not 

apparent from clinical symptoms alone. This stratification will lead to a new taxonomy of 

disease.  
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Figure 1.1:  Stratification 

  

If mechanistic information can be associated with disease subtypes, novel therapeutics can be 

designed to specifically modulate the molecular mechanisms that give rise to the subtype. 

Rather than using a generalized therapeutic approach to a complex disease, patients can be 

matched to treatments that are known to be efficacious against their diagnosed molecular 

disease subtype. This individual approach to treatment can lead to higher success rates while 

minimizing trial and error with respect to medical intervention. 

1.3 Precision Medicine 

Precision medicine is the practice of developing therapeutics specialized for the treatment of 

specific disease subtypes and the prescribing of these therapeutics to only those patients that 

exhibit, as demonstrated by robust diagnostic tests, the disease subtype corresponding to the 

pertinent therapeutic agent. Precision medicine promises to provide “the right drug for the right 

patient at the right time at the right dose”. Major precision medicine initiatives aiming to 

collect genetic data from large numbers of individuals have been launched in several nations4, 

including the United States (one million individuals) and the United Kingdom (100,000 

individuals) with a focus on better understanding cancer and rare diseases. 

 

Technological developments that have substantially increased the throughput of molecular data 

acquisition have led to exponential decreases in per subject costs of molecular profiling. The 

ability to generate massive molecular profile collections matched with corresponding advances 

in biology, computational methodologies and increases in computing power are transforming 

the approach to disease research and will most assuredly transform the future practice of 

medicine4. The convergence of these developments in technology, biology, and computing has 

driven a tremendous amount of activity in personalized medicine (or P4 medicine as it is also 

known as, reflecting the four key components, namely Personalized, Predictive, Preventive 

and Participatory)5. As large-scale molecular data collection becomes cheaper, the challenge 

in using these data will shift from data generation (e.g. sequencing) to data analytics6. Indeed, 

several aspects of data sciences including data storage, standardization, integration, 
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provenance, mining, and analytics are emerging as fundamental challenges in realizing the 

promise of precision and personalized medicine.  

1.4 Historic references 

The relevance and importance of data to medicine is, of course, not new. Florence Nightingale 

in 1869 was aware of the importance of collecting and analyzing, statistically and visually, 

epidemiological data to assess, justify and promote changes in hygiene and medical practice to 

benefit public health. She also understood the importance of the graphical presentation of data7. 

 

John Snow, a physician practicing during the same period as Florence Nightingale, used data 

analysis to suggest the source of an outbreak of cholera in London. He mapped places where 

deaths had occurred and identified clusters of deaths, one of which was close to a water pump. 

His work demonstrated the importance of using data analytics and visualization in responding 

to public health crises. From such foundational data driven insights, modern medical research 

has grown to rely on a wide breadth of sophisticated analytic methods applied by highly trained 

information and analytic discipline specialists.     

1.5 Opportunities and challenges: U-BIOPRED as a case example 

Translational medicine studies routinely collect multiple types of data from patient cohorts.  

Traditional low dimensional clinical descriptors rely on a single, or small collection, of data 

values to describe a clinical measurement. Low dimensional values include demographic 

attributes, laboratory measurements and procedural endpoints. High dimensional (or Omics) 

data, with hundreds, to hundreds of thousands, of data values are also routinely captured from 

high throughput instrument platforms. These data represent profiles of molecular biomarkers, 

including genotypes, transcriptomics, metabolomics, proteomics and other profiles. 

 

A recent, large, multi-partner study on severe asthma by U-BIOPRED (Unbiased BIOmarkers 

in PREDiction of respiratory disease outcomes) illustrates the challenges of data management 

and data analytics8. The U-BIOPRED consortium collected transcriptomics, lipidomics, 

breathomics (exhaled gases) and other molecular profiles. These molecular features were, and 

continue to be, used to stratify asthma into disease subtypes by employing data integration 

approaches and unsupervised learning. A patient’s health status at a given time is characterized 

by the combination of various high and low dimensional data values collected from the patient 

during the study. Data is collected longitudinally (i.e. at multiple time points during the study) 

such that changes in a patient’s health status as the study progresses can be, ideally, correlated 

with changes in one or more molecular profiles9. Correlations identified in this manner become 

hypotheses that can subsequently be rigorously studied with the purpose of stratifying disease 

subtypes through the discovery of causal relationships between endogenous physiological 

changes and the wellbeing of individual patients. The specialized field of science that applies 

human clinical and molecular profiles to explore the basis of disease is generally termed 

translational research. In depth understanding of human pathology promotes the selection of 
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better therapeutic targets preclinically that increases the probability that promising preclinical 

therapies will demonstrate efficacy (or translate) in phase-2 clinical trials. The similar term, 

translational medicine, refers to the introduction of promising therapeutics into successful 

medical practice. However, translational research and medicine are often used interchangeably 

in scientific discussion and literature. 

 

The U-BIOPRED collaboration surfaced several key data-related issues that impede the 

progress of interpreting translation research outcomes. A major impediment is the difficulty in 

standardizing and integrating disparate types associated with translational studies such that 

these data can be readily used for mathematical or visual analysis. Typically, analysts will need 

to transform datasets into specialized data structures and formats, an often tedious and time-

consuming activity, prior to applying a specific analysis method. Bench biologists and 

clinicians may not be trained in the data sciences skills necessary to prepare data for analysis. 

Instead, direct support from data scientists and/or sophisticated custom software packages are 

often necessary to complete exploratory analysis plans. 

 

A diverse set of analytical methods can be applied to translational datasets once these datasets 

are prepared for use. Analysis can be performed by computational specialists or through 

software designed for use by clinicians and scientists not specifically trained in the art of 

computational method development and operation.  

 

However, clinicians and clinical scientists are crucial to translational data management and 

analysis. These roles ensure that data fields are properly defined and inter-related, data values 

are consistent in their format and the meaning of data values are sensible with respect to the 

scientific observation or description that these data describe. Clinical scientists must 

collaborate with dedicated technologists and analysts to expedite data processing and assure 

the quality the study’s data assets through participation in planning the data strategy for the 

study and testing of the data processing methods that are developed. 

 

This book serves as an introduction to data management and analysis concepts for clinical 

scientists who are not also information technologists. It is hoped that a basic understanding of 

the information management concepts and processes pertinent to clinical studies will promote 

strong collaboration between clinical scientists and their technology partners leading to 

confident and high value interpretations of study data. 

 

It is imperative that a data plan be established for a translational study. Data processing and 

structure will be critical for the efficient use of the collected data. Moreover, properly 

structured data, including allowance for, and representation of, incomplete data will ensure that 

intended research questions can be productively addressed. Adherence to established data 

standards will have a direct impact on the value of the dataset. One aspect of value being ease 

of use within the context of the study for which the data was collected. A second aspect of 

value being the dataset’s potential to contribute to research proposals beyond the study for 
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which the data were collected. This second aspect is, of course, a critical strategy to maximize 

the study investment and could provide the study investigators, and others, substantial benefit 

with respect to their pursuit of research interests well beyond the completion of the study itself. 

The motivation to move quickly from protocol design and approval to study start may be at 

odds with allocating time to create a data plan prior to study start. However, delays in 

addressing data management processes will increase risks with regards to achieving the 

analytic goals of the study and may limit the long-term value of the study data. 

  

For those readers who are medical practitioners it is hoped that this book will spark interest in 

data driven care as it is expected that all clinicians of the future will have to understand how to 

apply an expanding wealth of individual and cohort derived information to benefit their 

patients. Data and software will be increasingly relevant to medical practice as an enabler of 

efficacious care provided by the physician. 

 

Hawgood et. al. state that the field of precision medicine is at an inflection point. Progress 

made to date has been promising, although the development of precision medicine tools and 

techniques will continue to accelerate bringing change to existing research paradigms and the 

potential for unprecedented understanding of the nature of complex disease. Clinicians, 

researchers, technologists and patients, all collaborating with the intent of developing safe and 

effective personalized treatments for complex diseases, will make an enormous difference in 

alleviating the suffering of patients10. Clinicians who do not appreciate and participate in 

clinical data sciences risk being left behind the precision medicine revolution.  

1.6 Scope of this book 

This book is meant to be a guide for clinicians beginning their data sciences journey with the 

aim of increasing their collaborative potential with respect to clinical data management. Think 

of it as learning a new language to enable conversations about data. Although reading this book 

will not confer expert level competencies with respect to data science and analysis, it will 

provide tools to assist in collaborative translational research. The chapters are arranged 

logically for anyone wishing to explore the subject matter systematically from scientific 

concepts pertinent to the conduct of translational studies (chapters 2 and 3) to in-depth technical 

discussions pertaining to data management and analytic processing (chapters 4, 5, 6, 7). 

Chapter eight provides examples of the application of the technologies discussed in this book. 

Chapter nine describes Open Source Software fundamentals and the drivers for its adoption. 

However, each chapter has been written for independent reading and review based on the 

reader’s preference. As such, the reader may find certain redundancies across the chapters, 

particularly with respect to foundational subject matter. 

 

The book is set up as follows: 

Chapter 2 introduces data analysis techniques pertinent for translational study conduct. 

Chapter 3 reviews ethical and legal contexts applicable to translational research. 
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Chapter 4 describes the data life cycle for translational research and corresponding data 

management strategies. 

Chapter 5 reviews analytical techniques commonly applied to translational research data. 

Chapter 6 details an open license system, tranSMART, available to support the data 

management and analytic processing for translational research projects. 

Chapter 7 details a high-performance compute environment designed to support high 

dimensional data analytics for translational research projects. 

Chapter 8 provides example projects employing techniques described in prior chapters. 

Chapter 9 examines motivations for the production and adoption of Open Source Software. 
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Chapter 2: The Clinical Research Landscape in the 

Era of Big Data 

Xian Yang and Yike Guo 

2.1. Study Designs  

One typical way to classify clinical trials is based on how researchers behave. 

 

Observational studies are used to monitor the condition of study participants, assessing their 

medical status and progress without testing specific medical interventions. 

Interventional studies are used to test the safety and/or efficacy of medical therapies 

comparing the outcomes manifest across different treatment regimens1. 

 

Figure 2.1 from (“An Overview of Clinical Research: The Lay of the Land” 2002)2 explains 

the process of deciding which kind of study design is warranted. If the exposure/treatment is 

under test by the investigators, then it is an interventional study. With interventional studies, 

investigators must assign study participants to exposures using an established randomization 

scheme to ensure confidence in the analysis results3. The most popular interventional study is 

the randomized controlled trial (RCT). RCTs take a homogenous group of participants and 

randomly divide them into two groups, ideally with no selection and confounding biases. One 

group, the treatment group, is exposed to the test therapy while the alternate group acts as a 

control and is assigned a placebo (no exposure). Statistical comparison of pertinent medical 

measurements between the two groups leads to a determination of the effect of the intervention. 

 

For the observational studies, the presence of comparison patient groups is termed an analytical 

study while studies having only one cohort are termed descriptive. There are three typical 

analytical studies: cohort study, case-control study and cross-sectional study. A cohort study 

is a longitudinal (duration based) study that samples a cohort to investigate the cause of a 

disease or pathology4. A cohort is a group of people sharing a common characteristic or 

experience within a defined period (e.g., same birth date, same treatment strategy). An example 

question to be answered by the cohort study could be whether smoking is associated with lung 

cancer. The cohort study starts with an exposure (e.g., smoking) and follows people for a few 

years to measure outcomes (e.g., lung cancer). A case-control analytical study begins with 

outcome (e.g., lung cancer) and seeks to determine a statistical association of the outcome to 

an exposure (e.g. smoking). The case-control study is only used to detect factors that would 

result in a medical condition by comparing people with the condition to people having, ideally, 
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very similar physical traits but do not manifest the condition. If the study determines exposure 

and outcome at the same time, then it is a cross-sectional study. A cross-sectional study assesses 

the prevalence of medical conditions across a target population providing a snapshot of the 

distribution of a disease in a population at a given time. 

 

Figure 2.1: The process of choosing an appropriate study design  

 

The advantages and disadvantages of different designs are summarized in Table 2.1 5  6 . 

Selection of a design is based on the nature of the research questions of interest. The feasibility, 

cost, length of time, risk and benefits to the participants must also be considered7. Complicated 

research questions may require multiple studies.  

 

Table 2.1:  Advantages and disadvantages of some typical study designs.  

Study design Strengths Weakness 

Cohort study ● Temporality 

demonstrated 

Individualized data  

● Ability to control for 

multiple 

confounders  

● Can assess multiple 

exposures Can 

assess multiple 

outcomes 

● Expensive  

● Time intensive  

● Not good for rare 

diseases 

Case-control ● Inexpensive 

● Timely 

● Individualized data 

● Ability to control for 

multiple 

confounders 

● Good for rare 

diseases 

● Can assess multiple 

● Cannot calculate 

prevalence  

● Can only assess one 

outcome 

● Poor selection of 

controls can 

introduce bias  

● May be difficult to 

identify enough 
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exposures  cases  

● Prone to recall bias  

● No demonstrated 

temporality 

Cross sectional ● Inexpensive  

● Timely 

● Individualized data  

● Ability to control for 

multiple 

confounders; 

Can assess multiple 

outcomes 

● No temporality 

● Not good for rare 

diseases 

● Poor for diseases of 

short duration 

● No demonstrated 

temporality 

RCT ● Unbiased 

distribution of 

confounders 

● Blinding more likely 

● Randomization 

facilitates statistical 

analysis 

● Expensive: time and 

money 

● Volunteer bias 

● Ethically 

problematic at times 

2.2 Statistical power and the clinical study 

2.2.1 Sample size calculations 

Sample size calculations determine the number of participants needed to detect a clinically 

relevant treatment effect and are usually the first step in a clinical study design8. The sample 

size should be optimized by considering both the costs associated with recruiting patients and 

the likelihood of obtaining significant findings9. There are three plausible approaches for 

estimating the sample size during the pre-study phase: 

 

1. Use a comparable dataset from the public domain or a previous study 

2. Carry out a pilot study 

3. Base estimations on the minimum clinically meaningful difference 

 

Finding public datasets having the same population and experimental conditions as those of 

the proposed study will likely be difficult. However, discovering comparable datasets collected 

from a similar population under analogous circumstances may be more likely. A pilot study 

could be performed if no comparable dataset is identified. The pilot study can be used to 

estimate effect size, test recruitment, study procedures, and follow-up strategies. Basing the 

sample size on estimations of the smallest clinically meaningful difference can be used if there 

are no comparable datasets and a pilot study is not feasible. 
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2.2.2 Basic statistical methods for calculating sample size 

Simple hypothesis testing must be understood to calculate the sample size. 

 

1. Null hypothesis and alternative hypothesis.  Statistical tests can be used to check 

whether the difference in means between two populations is significant or not. Null 

hypothesis 𝐻0 is defined with the statement saying that there is no difference, while the 

alternative hypothesis 𝐻𝑎  is with the opposite statement of 𝐻0 . Rejection of null 

hypothesis means the acceptance of the alternative hypothesis. For instance, if we are 

investigating the protein concentration levels between healthy people and asthma 

patients, the null hypothesis can be defined as “the protein has the same concentration 

level across two groups of people” while the alternative hypothesis would be “the 

protein is of  significantly different levels  between two study groups”.  

2. Type I error (alpha). Rejection of the null hypothesis when the null hypothesis is true 

is known as Type I error10. Type I error is also called false positive, which occurs when 

we observe a difference when there is none. The probability of getting Type I error with 

rejection region 𝑅 is 𝑃(𝑅|𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒). It is denoted by the Greek letter α and is also 

called alpha level. The significant level, which is usually set to 5%, indicates the 

acceptable probability of getting Type I error.  

3. Type II error (Beta). Not rejecting a null hypothesis when the alternative hypothesis 

is true is known as Type II error. Type II error is called as false negative, occurring 

when we fail to find a difference when in truth there is one. The probability of getting 

Type II error in a test with rejection region 𝑅  is 1 − 𝑃(𝑅|𝐻𝑎 𝑖𝑠 𝑡𝑟𝑢𝑒) . It is often 

denoted by the Greek letter 𝛽. Conventionally, the 𝛽 value is set at 20%, meaning that 

the false negative rate is controlled at the level of 20%. The calculations of different 

error types are shown in Table 2.2. 

4. Power (1-Beta). The power of a study reflects the probability of rejecting the null 

hypothesis when the alternative hypothesis is true. In the case of 𝛽 equal to 20%, the 

power is set to 80%, showing the probability of avoiding false negative conclusion. 

Power analysis is used to calculate the minimum sample size required to detect an effect 

of given size. 

5. Minimal clinical difference. The minimum clinical difference is the smallest numeric 

difference between a study attribute, measured across study groups, that constitutes a 

distinct physiological response. The minimal clinical difference is set by the 

investigator, for example, if heart rate is the outcome of a trial, the investigator could 

choose the difference of 20 beats per minute as indicative of a difference in physiologic 

response between two individuals. 

6. Effect size. The effect size is the quantitative measure of the difference in response for 

a measured attribute between two groups. The effect size is calculated as the difference 

between the means in two groups divided by the population standard deviation. Effect 
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size and sample size are inversely related (i.e. a larger the effect size reduces the 

required sample size for the study)11. 

 

Table 2.2: Relations between truth/falseness of the null hypothesis  

 Table of error types Null hypothesis (H0) is 

True False 

Decision 

About Null 

Hypothesis 

(H0) 

Reject Type I error 

(False 

Positive) 

Correct 

inference 

(True Positive) 

Fail to reject Correct 

inference 

(True 

Negative) 

Type II error 

(False 

Negative) 

2.2.3 Specific sample size calculations 

Each type of statistical analysis requires different elements (e.g., expected proportion, standard 

deviation) to determine the needed sample size. There is no single method for estimating 

sample size for all kinds of analysis. 

2.2.4 Sample size calculation for univariate analysis 

Sample size calculations for single clinical attributes (univariate analysis) are used to determine 

the precision of estimates, such as proportion and mean.  

 

The population proportion describes the prevalence of a clinical attribute across a defined 

population 12. For example, a study may calculate the prevalence (a.k.a. proportion) of diabetes 

across the adult UK population to be 6%. Proportion is simply count of positive observations 

(x) in a total population of N size. Assuming each observation is independent in the population 

proportion is commonly estimated using a confidence interval known as a one-sample 

proportion in the Z-interval 13. 
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The margin of error is calculated. 𝐸 = 𝑍𝛼/2√
𝑝(1−p)

𝑁
, where 𝑍𝛼/2 is the z-value having a tail 

area of 𝛼/2to its right. 

With a desired error value of 𝐸 the sample size can be obtained from 

𝑁 =
(𝑍𝛼/2)2𝑝(1−𝑝)

𝐸2 , where �̂� is the educated guess of the population proportion. With 0 < �̂� ≤

1, the maximum value of �̂�(1 − �̂�)is 0.25. Hence, we could get a simplified form for sample 

size calculation as 𝑁 =
(𝑍𝛼/2)2

4𝐸2 . 

 

Sample sizes for other descriptive statistics, such as mean, are estimated in a similar manner 

assuming individual values of the attribute under study are normally distributed across the 

population.  

For the mean and standard deviation of a sample population. 

The statistic follows the t-distribution as 𝑍 =
x̅−𝜇 

𝑠/√𝑁
. 

The sample size can be estimated by sample t-interval for 𝜇. The margin error is of the form 

𝐸 =
𝑡𝛼/2𝑆

√𝑁
. With a desired margin error, the sample size can be calculated through 𝑁 = (

𝑡𝛼/2𝑆

𝐸
)2.  

One issue we need to pay attention is that 𝑡𝛼/2 is sample size dependent. Therefore, we need 

to carry out an iterative process for solving N. That is, we start with an initial guess of N to get 

its corresponding 𝑡𝛼/2. Then, using this 𝑡𝛼/2value, we estimate N. We keep updating N and 

𝑡𝛼/2 in this way until the estimated N is consistent with the value used for 𝑡𝛼/2 

2.2.5 How to calculate sample size for bivariate analysis? 

Sample size calculation for bivariate analysis involving two clinical attributes is more 

complicated. Table 2.3 14 lists out the required elements for sample size calculation for some 

typical bivariate analyses. The details of sample size estimation for different bivariate analyses 

are as follows: 

 

Table 2.3: Required elements for sample size determination for bivariate analyses 

Comparison of the two 

proportions  

Comparison of two means  Association of two normally 

distributed interval variables  

Expected percentage in 

group 1 

Effect size Effect size 

Expected percentage in 

group 2 

Standard deviation of 

interval variable 

 

Ratio of number of subjects 

in group 1 to number of 

subjects in group 2 

Alpha Alpha 

Alpha Power Power 
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Power   

 

● Comparison of the two proportions: In the study with null hypothesis of 𝐻0: 𝑝1 = 𝑝2 

and alternative hypothesis of 𝐻𝛼: 𝑝1 ≠ 𝑝2, where 𝑝1and 𝑝2 are proportions in group 1 

and group 2, the sample size can be estimated through the following formula: 𝑁 =
(𝑧𝛼/2√2𝑝(1−𝑝)+𝑧1−𝛽√𝑝1(1−𝑝1)𝑝2(1−𝑝2))2

(𝑝1−𝑝2)2
, where 𝑝  equals to 

𝑝1+𝑝2

2
, 𝑧𝛼/2and 𝑧𝑧1−𝛽

are the 

normal deviates for Type I error and power of study15 16 17 

● Comparison of two means: In the study with null hypothesis of 𝐻0: 𝑚1 = 𝑚2  and 

alternative hypothesis of 𝐻𝛼: 𝑚1 ≠ 𝑚2, where 𝑚1and 𝑚2are means for group 1 and 

group 2, the sample size can be estimated by: 𝑁 =
(𝑟+1)(𝑧𝛼/2+𝑧1−𝛽)2𝜎2

𝑟𝑑2 , where 𝑟 =
𝑛1

𝑛2
 is 

the ratio of sample size required for two groups, 𝜎  and 𝑑  are the pooled standard 

deviation and difference of means of two groups18. 

● Correlation: In the study with null hypothesis of 𝐻0: 𝑟 = 0 and alternative hypothesis 

of 𝐻𝛼: 𝑟 ≠ 0, where 𝑟 is the correlation between two groups, the sample size can be 

estimated through the following formula: 𝑁 =
(𝑧𝛼/2+𝑧1−𝛽)2

1

4
[𝑙𝑜𝑔𝑒(

1+𝑟

1−𝑟
)]

, where 𝑟is the correlation 

between two variables19. 

2.2.6 Calculating sample size for multivariate analysis 

Conventionally, the minimum sample size required for most multivariate analyses involving 

sets of more than two clinical attributes is determined using the rule-of-thumb, which is mostly 

derived from multiple linear regression (MLP). Some sample size guidelines suggest the ratio 

between the number of independent variables and subjects is 1 to 10 20  or 1 to 3021 . In 

Knofczynski and Mundfrom 2007, the minimum sample size for using MLR for prediction is 

suggested to be varied according to the effect sizes22. In Wilson Van Voorhis et al. 2007, an 

overview of the sample size rules of thumb is shown as it is in Table 2.423. 

 

Table 2.4: Sample size rules of thumb 

Relationship Reasonable sample size 

Measuring group differences (e.g., t‐test, 

ANOVA) 

Cell size of 30 for 80% power, if decreased, 

no lower than 7 per cell24. 

Relationships (e.g., correlations, 

regression) 

~50  
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Chi‐square At least 20 overall, no cell smaller than 5. 

Factor Analysis ~300 is “good” 

 

2.2.7 Sample size feasibility 

There may be the case that the estimated sample size is larger than the maximum number of 

study participants that could be enrolled into a study. In this case, the following should be 

considered before abandoning the study25: 

1. Is there more sensitive marker of the outcome? For example, death due to lung disease 

is a more sensitive marker of smoking than other diseases such as heart attack.  

2. Can we repeated measurements be collected? Repeated measurements can increase the 

number of observations without increasing the sample size. 

3. Can power be relaxed? For example, we could decrease the power from 90% to 80%. 

4. Can the population be limited to individuals more likely to experience the outcome 

under study? For example, setting a minimum age and BMI enrollment criteria could 

foster insight regarding the impact of elevated cholesterol on the risk of myocardial 

infarction using a smaller study population. 

 

If the above strategies are not applicable, the researcher must consider pragmatic solutions, 

such as seeking additional funding, or reassess the scope of the proposed investigation. 

2.3. The N-of-1 trial 

2.3.1 The value of N-of-1 trials 

Heterogeneity with respect to the underlying mechanisms of complex disease results in 

inconsistent efficacy of generalized treatment across patients regardless of whether treatments 

of been demonstrated to be effective on average26. Therefore, large scale randomized controlled 

trials (RCTs) cannot comprehensively address all clinical problems across patient populations 
27 28. 

 

An N-of-1 (single subject) clinical trial investigates the optimal medical treatment for an 

individual patient using the objective data-driven criteria. As reported in Gabler et al. 2011 29,  

more than 2,154 N-of-1 trials across 108 studies have been conducted between 1985-2010 

addressing various clinical conditions, such as neuropsychiatric, musculoskeletal and 

pulmonary.  Such trials are becoming more prevalent due to increased appreciation of disease 

heterogeneity, the availability of datatypes capable of assessing individual physiologic 

variations and data processing methods that allow individual trials to be conducted efficiently.  
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The indications and contraindications for N-of-1 trials are summarized in 30. 

2.3.2 What are typical designs for the N-of-1 trial? 

In the N-of-1 trial, datasets are collected longitudinally as frequently as possible for an 

individual patient31. The basic design principles include randomization, blinding, replication 

and carryover 32 (“Design and Implementation of N-of-1 Trials: A User’s Guide | Effective 

Health Care Program” n.d.):  

● Randomization/Counterbalancing: To maintain the variability of experiments, 

patients are given a sequence of treatments, which can be either randomly generated or 

definitively assigned [1,2]. Most commonly, treatments are administered consecutively 

but separated by wash out periods (also termed carryover) in which the study 

participant receives no treatment to return the subject to their baseline physiology. 

Assuming two treatment protocols, A and B, a randomized four-period trial could be 

conducted longitudinally according to the following designs: ABAB, BABA, ABBA 

and BAAB. ABAB and BABA are unbalanced designs as the treatments are rotated 

such that no single treatment is administered in consecutive periods. Conversely 

counterbalancing designs alternate such that one or more treatments are administered 

repeatedly (i.e. ABBA and BAAB). 

● Blinding: Patients should be kept blinded to the treatment design although there is a 

risk that patients may deduce the treatment regime based on; for example, their 

responses to the treatments, which could confound outcomes.   

● Replication: Sample size in N-of-1 studies refers to the number of periods and 

measurements collected during the periods. 

2.3.3 What are the analysis methods for the N-of-1 trial? 

The analysis methods in N-of-1 trial fall into the following categories: visual inspection, 

statistical analysis, time series analysis and Bayesian methods33 34 35 36 37 38 39 Table 2.5 from 

Gabler et al. 2011 40  has summarized these analysis methods. The analysis methods are 

designed to compare treatment results accounting carryover and randomization effects.  

 

Table 2.5: Analysis methods for the investigated 108 N-of-1 trials 

Method Number of studies 

Pooled analysis 26 
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 Bayesian   6 

 Other  20 

Nonparametric analysis 24 

 Wilcoxon signed-rank test  8 

 𝜒2  4 

 Mann-Whitney  3 

 Fisher exact test  3 

 Sign test  4 

 Other  7 

Graph or visual examination 56 

T test 48 

Regression model 18 

 ANOVA  13 

 Other  5 

 

Let us discuss some example methods as follows: 

● Visual inspection: Many studies do not have formal analysis except visual inspection. 

People use graphs to compare the outcomes of two treatments. This method can only 

work well for simple datasets with obvious differences between treatments 

● Statistical methods: The simplest statistical test in N-of-1 trials is the sign test. 

Suppose under the two-treatment case, treatments are randomized in blocks of two 

periods. The difference in response for each block is calculated and assigned a sign (+/-

) depending on the difference. Binomial analysis can be used to determine relative 

treatment efficacy although insightful inferences with respect to effect size may be 

ignored. 

● Bayesian methods: Bayesian (conditional probability) methods incorporate results 

from the same N-of-1 study design conducted across many patients. Bayesian inference 

may challenge individual treatment responses that may appear significant in isolation 

but are not significant when analyzed across many similar patient trials.  

● Time series analysis: Attribute values collected consecutively throughout a trial may 

not appear to be independent measures. This bias associated with time-consecutive 

measures must be corrected during analysis and models exist that adjust the values of a 

present measurement based on that prior measurement41. 
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2.4. Data types associated with translational research 

2.4.1 Molecular datasets 

Many types of molecular and physiological data should be collected and integrated during a 

translational research study42. Molecular data types that are typically collected include gene 

sequences, gene expression (measured by the microarray or RNA sequencing technologies) 

and protein expression (measured by the mass spectrometry)43 with each data type profiling 

different aspects of an individual’s molecular physiology. Analyzing molecular datasets can 

lead to the discovery of biomarkers predictive of disease or indicative of a specific pathological 

state.  

 

The U-BIOPRED project44 used samples and medical information from hundreds of severe 

asthmatics to stratify disease subtypes. This work accelerated the discovery of novel diagnostic 

and therapeutic targets for asthma. U-BIOPRED generated various high dimensional Omics 

datasets, including genome wide association (GWAS), Transcriptomics, Proteomics, 

Lipidomics and Breathomics. Moreover, this project also generated low dimensional 

histological, morphological, clinical and patient reported outcome datasets to comprehensively 

model asthma phenotypes.  

 

Figure 2.2 shows typical steps of carrying out the U-BIOPRED project:  

1. The first step is to collect patient samples and construct biobanks for sample storage 

and management. Cross-sectional and longitudinal cohort studies for both adult and 

pediatric healthy controls and asthma patients are well designed. 

2. The second step is using data-driven approach to stratify patients of different groups 

using the “handprint”, which are extracted from high-throughput ‘Omics’ data and 

patient clinical data45.  

3. The third step is to validate handprints and investigate the asthma phenotypic features.  

4. The fourth step is to refine phenotype ‘handprints’ with pre-clinical and human 

exacerbation models.  

The most important step for generating handprint is step 2, which adopts unbiased approach to 

generating disease ‘handprints’ based on comprehensive and integrative analysis of various 

Omics data.  
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Figure 2.2: The steps of carrying out the U-BIOPRED project. 

 

2.4.2 Using molecular datasets 

Molecular data profiles can be used for a variety of purposes. The following are examples 

pertinent to U-BIOPRED. 
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Mapping molecules to pathways 

Omics datasets can be integrated with traditional clinical datasets to generate a handprint 

(patient profile) for asthma phenotyping. Omics feature profiles can be matched to specific 

subgroups of severe asthma. These Omics features, genes, proteins and other molecules, 

can be mapped to molecular pathways to generate hypothesizes as to the causative nature 

of the disease subtypes. These hypotheses can be tested experimentally in the laboratory or 

by using in silico models of biological processes (see Figure 2.3). Molecular pathway 

modelling a time-consuming process given the massive number of potential molecular 

interactions. However, identifying disease-related pathways is critical to understanding the 

biological processes of disease. 

 

Figure 2.3: Process of obtaining pathway models for understanding sub-phenotypes. 
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Modelling pathways 

Having detected potential disease related pathways, the next step is to understand disease 

mechanism by dynamic modelling of pathways46 47.  The UBIOPRED team worked with 

clinicians and biologists to construct an integrated MAPK-38 and GR pathway model to 

explain corticosteroid resistance in patients suffering from severe asthma 48 . 

Corticosteroids (CS) are essential stress hormones that regulate many physiological 

processes including immune function and cell proliferation. These hormones are used as 

treatments for asthma due to their anti-inflammatory and immunosuppressive properties. 

The binding between CSs and glucocorticoid receptor (GR) results in nuclear 

translocation. Subsequent attachment of activated GR to DNA in the nucleus leads to gene 

expression modulation via transactivation 49 . In the meantime, to suppress the 

proinflammatory cytokine transcription through transrepression, activated GR can interact 

with other transcription factors. However, for asthma patients the anti-inflammatory of CS 

is impaired. The impaired suppression of pro-inflammatory cytokines by dexamethasone 

has been found to be related to augmented activation of p38 MAPK 50 51. Therefore, it is 

necessary to study interactions of p38 MAPK pathway with the GR-induced signaling 

pathway.  

 

Constructing a mechanistic model is a plausible way to understand the mechanism of 

corticosteroid responsiveness in inflammatory diseases. However, most studies only focus 

on mechanistic models of isolated pathways such that integrated models of various 

interconnected pathways are rarely investigated. For example, a model for LPS-induced 

p38 pathway can be found in the online pathway databases 52. This p38 model was used to 

construct a novel mechanistic model of the GR pathway based on the known biological 

reactions. The work led to a proposed interaction (crosstalk model) between these pathways 

(see Figure 2.4). Potential entities that crosstalk could happen are TGF kinase-1 (TAK1), 

MAPK phosphatase-1 (MKP-1) and phosho-p38 itself. However, this proposed interaction 

model is found to be difficult to be validated by wet-lab experimental observations. The 

main challenge in constructing pathway models is determining accurate and complete 

model parameters (e.g., kinetic rates and initial concentrations) from limited time series 

measurements. Converging to a unique parameter set solution is therefore difficult 53 . 

Pathway models can be simplified at the risk of ignoring important and insightful 

interactions. Therefore, it is better to develop and maintain models that are as detailed and 

accurate as achievable, available data and resources.  
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Figure 2.4: The integrated pathway of p38 MAPK and GR from
54

 Holehouse et al. 2012 

2.4.3. Electronic health Records 

Electronic health records (EHR) are another critical source of data. The application of EHRs 

in the clinic can improve the quality of patient care in various ways, such as supporting 
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pragmatic clinical trials and big data driven discovery55 56. Recent studies have shown that 

secondary use of EHRs has enabled data-driven prediction of drug effects and interactions57, 

identification of type-2 diabetes subgroups58 , discovery of comorbidity clusters in autism 

spectrum disorders59 and improvements in recruiting patients for clinical trials60. 

 

Using EHRs to construct predictive models is challenging due to the highly multivariant nature, 

noise, sparseness and lack of completeness associated with EHR data 61 62 63. Data driven 

approaches have been proposed to overcome these problems 64 65 66. These methods include 

supervised 67, unsupervised models, including the use of recurrent neural networks (RNN) by 

Choi et al. 2016 68. As EHRs are being increasingly generated, high performance compute 

environments such as Hadoop will be necessary to train automated classification methods to 

identify patterns within EHR databases69. 

2.4.4 Medical imaging 

Medical imaging, capable of characterizing morphological and functional properties of tissues, 

can also be used to construct personalized models of disease. Magnetic resonance imaging 

(MRI) 70 , computed tomography (CT) 71 , positron emission tomography (PET) 72  and 

ultrasound are common medical image modalities available to medical researchers capable of 

discriminating anatomical features, infusion of molecules within tissues and material 

properties73. As a non-invasive tool, imaging enables the study of tissues that are difficult to 

sample through biopsy, such as lesions in cancer patients (“The Evolution of Medical Imaging 

In Clinical Research” n.d.74). The functional nature of many imaging methods, such as those 

based on time-lapsed MRI and ultrasound, greatly facilitate diagnostics for many conditions 

and have a tremendous impact in medical practice 75 76. The availability of automated image 

processing and analysis software promotes the use of imaging for translational research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Concepts in Information and Knowledge Management for Translational Research 

 

2.4.5 Wearable biosensors 

Wearable biosensors have emerged in both consumer and medical markets. The application of 

medical images and wearable biosensors to assess medical conditions, i.e. digital biomarkers, 

are increasingly being incorporated into clinical trials. Continuous monitoring of patients 

outside of medical facilities is a great benefit of the clinical application of wearable sensors77. 

There are now many wearable biosensors designed to monitor patients having specific 

conditions. Examples include devices that track the physiologic and kinetic parameters 

associated with disabilities resulting from multiple sclerosis78 and accelerometers worn on the 

wrists of Parkinson’s disease patients to monitor circadian sleep patterns as well as motor and 

autonomic disruptions. 

 

Wearable biosensors are starting to decouple some elements of medical examination from 

office visits with certain medical abnormalities detectable in real time without burdening the 

schedule of the patient. Applications, leveraging both standard and augmented capabilities of 

the ubiquitous mobile phone, are available to measure blood pressure 79, identify cervical 

cancer80, and even perform an eye exam 81. Besides the mobile phone, personal items such as 

smart helmets and clothing-embedded sensors are used for health monitoring, disease treatment 

and detection 82.  

 

2.4.6 Social media 

Social media, such as Facebook, Twitter, blogs and Wikipedia, are web-based tools for people 

to create, share, comment upon or modify content83 84. Data available from these sources are 

often documents that do not conform to consistent formats (unstructured data) and, therefore, 

are typically difficult to incorporate into medical analyses. However, these data can contain 

information useful to the clinical researcher such as lifestyle preferences and medically related 

experiences85. Social media provides patients a way to communicate with fellow patients and 

clinicians through online communities that are not limited by geographic boundaries.86 

2.4.7 Data standards 

Data standards in clinical research refer to methods, protocols, terminologies and specifications 

for collecting, exchanging, storing and retrieving clinical information. Table 2.6 from 

Bioinformatics for Omics Data87 lists the major reporting standards for various Omics data 
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types. Reporting standards promote consistency in the representation of experimental designs, 

clinical measurements and analysis results. Consistent data representations promote and 

expedite research data exchange, data storage and software data processing. Table 2.7 from 

Bioinformatics for Omics Data88 lists the most popular exchange standards for Omics datasets. 

The DICOM (Digital Imaging and Communications in Medicine) format is, by far, the most 

commonly used data standard for medical images.  

 

Table 2.6: Existing reporting standards for Omics. 

Acronym Domain 

CIMR Metabolomics 

MIAME Transcriptomics 

MIAPE Proteomics 

MIGS-MIMS Genomics 

MIMIx Proteomics 

MINIMESS Metagenomics 

MINSEQE Genomics, Transcriptomics (UHTS) 

MISFISHIE Transcriptomics 

 

Table 2.7: Data exchange and modelling standards for Omics. 

Data format Object model Domain 

FuGE-ML FuGE-OM Multiomics 

ISA-TAB  Multiomics 

MAGE-ML MAGE-OM Transcriptomics 

MAGE-TAB MAGE-OM Transcriptomics 

MIF (PSI-MI XML)  Proteomics 

MzML  Proteomics 

mzIdentML  Proteomics 

PML PAGE-OM Genomics 

PML SDTM Healthcare 

 

 
 

https://paperpile.com/c/Na4lFB/5yzW+YQTb


Concepts in Information and Knowledge Management for Translational Research 

 

2.5. Big Data Analytics 

2.5.1 Big data analytics in clinical research? 

The term Big Data traditionally referred to datasets that consume at least one terabyte of 

memory on a computer storage device. Datasets at this volume tended to require data 

processing systems more powerful than a standard personal computer, involvement of 

computer professionals for data management and specialized software for data processing. 

Although there is no precise definition of Big Data, the term heralded a new era of computing 

potential in which large scale datasets, interrogated by sophisticated mathematical pattern 

recognition methods, could be leveraged to obtain transformative insights beyond those 

intended at the time such datasets were originally conceived and collected.   

 

The criteria that classically describe big datasets are volume (memory consumption), velocity 

(rate of data generation), variety (number of data attributes), veracity (data quality, correctness) 

and, sometimes, value (interest with respect to data consumers). For translational research, 

molecular and digital biomarker data, especially raw data generated by instruments and 

devices, will generally meet the volume criteria of big data. The rate of data generation from 

wearable devices will likely constitute a big data challenge for clinicians. Low dimensional 

clinical study datasets, which can number hundreds to thousands of attributes, and EHRs are 

highly variable dataset. Reuse of translational information is a key value proposition justifying 

the creation of such data and careful management of these data with respect to availability and 

standardization will enhance the value of these data to the research community. 

 

Big data analytics projects require specialized data processing environments that are typically 

not necessary for conducting traditional clinical research programs. A common strategy for 

accelerating data analysis for large scale data sets is to subdivide and distribute these datasets 

across many computers for parallel processing. The results of these independent processing 

events are then aggregated into a derived reduced dataset.  Open source platforms such as 

Hadoop/Map Reduce, which provide specific implementations of distributed processing 

models, are increasingly used for big data analytics in clinical research. End users must 

approach Big Data analytics different from local data processing. For example, distributing 

standard statistical methods, that may be available to scientists through personal computer or 

server-based applications such as SAS and R, might require intensive, complicated 

programming efforts to design corresponding algorithms that operate efficiently on a 

distributed compute environment. Figure 2.5 from Raghupathi and Raghupathi 201489 presents 

a conceptual architecture of big data analytics. In this figure, big data in clinical research 

emanates from various resources and in various formats. Transformation tools need to 

efficiently process, modify and store raw big datasets in preparation for subsequent analysis. 

Following data processing, big data analytics platforms and tools are used to analyze these 
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data. Common big data platforms and tools can be found in Raghupathi and Raghupathi 201490. 

Typical applications of big data analytics are high performance queries, report generation, 

online analytical processing (OLAP), and data mining/pattern recognition. 

 

Figure 2.5: The conceptual architecture of big data analytics. 

2.5.2 Stages of big data analytics in clinical research 

The main stages of applying big data analytics in clinical research are summarized in Figure 

2.6 (adapted from Raghupathi and Raghupathi 201491). The initial stage builds a conceptual 

goal that, if of a large enough scale, establishes the need for big data analytics. The next stage 

probes the significance of the project through activities such as compiling a priori knowledge 

(literature review) and background materials such as pertinent existing datasets and 

implementations of potentially useful analytic methods. The third stage defines the structure of 

the datasets, collects and transformed the data and selects, builds and applies the analysis 

methods. The core part of this stage is the platform/tool evaluation and selection as listed in 
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Table 2.9. The fourth stage evaluates, validates and tests the analytic model and its derived 

results, following which, the analysis can be confidently used to generate insights. 

  

 

Figure 2.6: Key stages of big data analytics methodology 

Summary 

This chapter introduced the clinical study and the variations likely to be encountered when 

prosecuting translational research. Basic clinical study design was examined including 

biomarker extensions pertinent to the pursuit of individualized treatments for subtypes of 

complex diseases. Hypothesis generation through the association of experimentally derived 

molecular profiles with biological pathways was explored. Digital biomarkers including 

medical images and wearable biosensors were reviewed as elements of large-scale datasets 

which require specialized systems for data management and processing. 

 

Designing, conducting and analyzing clinical studies requires exceptionally specialized 

training and substantial experience. This chapter was written to provide readers with limited 

familiarity with clinical data management and analysis an appreciation of the types of activities 

that are necessary to operationalize precision medicine investigations. The following chapter 

will detail data management procedures for translation research. 

Step1. Concept Statement

•Establish need for big data analytics project in healthcare based on the “4Vs”.

Step 2. Proposal

•What is the problem being addressed?
•Why is it important and interesting?

•Why big data analytics approach?
•Background material

Step 3. Methodology

•Propositions
•Variable selection

•Data collection
•ETL and data transformation

•Platform/tool selection
•Conceptual model

•Analytic techniques
•Association, clustering, classification, etc

•Results & insight

Step 4. Deployment

•Evaluation & validation
•Testing
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Chapter 3: Ethical and Legal Considerations for 

Medical Data Reuse 

David Henderson, Fabien Richard and Neil Fitch 

3.1 Introduction 

The secondary use of data in biomedical research is becoming a major theme pertinent to 

discussions regarding the legal and ethical frameworks that supports scientific data processing. 

This trend is driven to a large extent by increasing scientific and technological capacities to 

collect and analyze large scale “Big” datasets. The potential for expanding the scientific 

understanding of the mechanisms of complex diseases is unprecedented with medical records 

available in electronic format and molecular biomarker assessments increasingly performed for 

both medical and research purposes.  However, these datasets contain sensitive personal 

information. Electronic health records contain overtly identifiable information regarding 

patients including names and geographical locations as well as health information that could 

be used illicitly against not only the individual but also their close relatives. Moreover, high-

dimensional molecular profiles, especially genomic sequences, are fundamentally identifiable 

through software-based comparisons. 

 

The General Data Protection Regulation (GDPR)1 has been in force in the European Union 

since May 2018 and attempts to define more precisely the scope of personal data: for example, 

by recognizing pseudonymized data as personal (identifiable) data and including genetic data 

in the category of ‘sensitive data’. The GDPR defines personal data as follows. 

 

‘Personal data’ means any information relating to an identified or identifiable natural person 

(‘data subject’); an identifiable natural person is one who can be identified, directly or 

indirectly, in particular by reference to an identifier such as a name, an identification number, 

location data, an online identifier or to one or more factors specific to the physical, 

physiological, genetic, mental, economic, cultural or social identity of that natural person 

(GDPR, Article 4, paragraph 1) 

 

The GDPR is pertinent to all European Member States including, at the time of this writing, 

the United Kingdom (UK) pending the UK’s exit from the European Union. The GDPR will 

be enacted as ‘UK GDPR’ and remain in force after the Brexit transition period, but data 

controllers and processors should be aware that it may be subject to revision either as part of 

the withdrawal negotiations or at a subsequent time point.  

 

Researchers face an ethical dilemma when using medical data. Medical data can benefit the 

health of patients, both communally and individually, when reused for translational research 
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studies; however, exposure of these sensitive data may lead to emotional trauma, e.g. 

embarrassment leading to depression and isolation, and tangible economic loss should health 

data be used inappropriately to determine employment or insurance eligibility. Therefore, 

investigators must limit use of these data and take precautions to reduce the possibility of 

inadvertently disclosing this sensitive information (see for example ref. 2)2. Informed consent, 

in which patients formally agree to allow the use of their data for research purposes, and data 

anonymization, in which personally identifiable information is removed, by deletion or 

unrecoverable alteration, from patient datasets are two widely employed methods for 

reasonably protecting patient privacy while reusing their medical data. 

 

Patients and clinical study participants have often been allowed the option to share certain 

medical data under carefully developed informed consent clauses approved by internal review 

boards (groups of people that approve and govern the conduct of clinical studies within an 

institution). Investigators are able, under circumstances consistent with the patient’s consent, 

to use data for research purposes not conceived of at the time that the patient’s data were 

collected. To protect the individual from the risks of health information reuse their data is often 

anonymized by removing or altering identifying data elements such that these data elements 

can no longer reference the patient. However, demographic information such as gender and 

ethnicity, which are typically important co-variants with respect to exploratory medical 

research and cannot be removed or anonymized, can lead to identification of patients when 

considered together with corresponding health measurements and published data such as social 

media posts. People with rare conditions would, of course, be at higher risk for identification 

based on their medical information alone. However, high performance statistical and cognitive 

computing association methods, many of which are discussed in chapters five and seven of this 

book, place people within the general population at risk of being identified should their medical 

data be misused by unscrupulous agents or stolen by cyber criminals. 

 

The specific definitions of anonymized data are important. It should be noted that these 

definitions presented here are those pertinent to the European Union (EU), especially as defined 

in the GDPR. These definitions are not necessarily concordant with those used in nations 

outside of the EU, although the concepts that these specific definitions describe will be relevant 

to medical research regardless of the location of conduct.   

 

‘Anonymization’ means the processing in such a manner that the personal data can no longer 

be attributed to a specific data subject (personal data are rendered anonymous). 

  

‘Anonymous information’ means information that does not relate to an identified or identifiable 

natural person or personal data rendered anonymous in such a manner that the data subject 

is not or no longer identifiable (GDPR Recital 26). 

  

‘Pseudonymization’ means the processing of personal data in such a manner that the personal 

data can no longer be attributed to a specific data subject without the use of additional 
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information, provided that such additional information is kept separately and is subject to 

technical and organizational measures to ensure that the personal data are not attributed to 

an identified or identifiable natural person (GDPR Article 4, paragraph 5) 

 

Genetic data is specifically defined in the GDPR as a type of personal data. 

 

Since genetic data contains unique information about the data subjects and their blood relatives, 

complete anonymization may not be technically feasible. GDPR Recital 26, however, states 

“To determine whether a natural person is identifiable, account should be taken of all the 

means reasonably likely to be used, such as singling out, either by the controller or by another 

person to identify the natural person directly or indirectly. To ascertain whether means are 

reasonably likely to be used to identify the natural person, account should be taken of all 

objective factors, such as the costs of and the amount of time required for identification, taking 

into consideration the available technology at the time of the processing and technological 

developments.” The ‘consideration of all objective factors’ leads to the concept of ‘de facto 

anonymization’, which may be applied to the processing of sensitive data without undue risks 

for the data subject (Ref. 3 and see section 3.3 below). 

 

‘Genetic data’ means personal data relating to the inherited or acquired genetic 

characteristics of a natural person which give unique information about the physiology or the 

health of that natural person and which result, in particular, from an analysis of a biological 

sample from the natural person in question (GDPR Article 4, paragraph 13) 

 

Sharing of health data seeks to optimize re-use of available data resources. This reuse reduces 

the overall costs of conducting research by avoiding duplicated efforts and improving the 

efficiency and reproducibility of research programs. With the Innovative Medicines Initiative 

of the EU commission alone valued in the billions of Euro, reuse of data is a compelling 

investment for taxpayers.  

3.2 Data Life Cycle 

The concept of a ‘Data Life Cycle’ (discussed in detail in the following chapter) represents the 

comprehensive flow of data from creation to destruction including all data manipulations, 

copies, derivations and system transfers. The Data Lifecyle applies to all information domains, 

including biomedical datasets.  
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Source: https://www.nexor.com/white-papers/enabling-secure-information-exchange-in-cloud-environments/ 

 

The idea that data may endure, and retain value, beyond the project or study period in which 

these data were generated, and indeed may outlive the system from which (or, in the case of 

medical data, the individual from whom) the data were collected, is central to justifying the 

investment of establishing a project ‘Data Life Cycle’.   While there is at present no agreed, 

unified concept as to what constitutes the perfect ‘Data Life Cycle’ 

https://www.bloomberg.com/professional/blog/7-phases-of-a-data-life-cycle/), there are, as 

presented above, at least six distinct steps, or phases, that are essential for successful data 

management. These steps are carried out by “data stewards” who are responsible for the 

management of data collections in a manner that is client-serving, ethically sound, and legally 

compliant. Manipulation of data throughout the data lifecycle constitutes an act of data 

processing. Data processing must be performed in such a manner as to sustain the integrity of 

data as it progresses through various intermediate states and is written to various storage 

repositories.  Data processing is as defined by the GDPR as follows. 

 

‘Processing’ means any operation or set of operations which is performed on personal data or 

on sets of personal data, whether or not by automated means, such as collection, recording, 

organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use, 

disclosure by transmission, dissemination or otherwise making available, alignment or 

combination, restriction, erasure or destruction (GDPR, Article 4, paragraph 2) 

 

The person(s) or agency(ies) that perform(s) acts of data processing is/are also explicitly 

defined. 

https://www.nexor.com/white-papers/enabling-secure-information-exchange-in-cloud-environments/
https://www.nexor.com/white-papers/enabling-secure-information-exchange-in-cloud-environments/
https://www.nexor.com/white-papers/enabling-secure-information-exchange-in-cloud-environments/
https://www.bloomberg.com/professional/blog/7-phases-of-a-data-life-cycle/
https://www.bloomberg.com/professional/blog/7-phases-of-a-data-life-cycle/
https://www.bloomberg.com/professional/blog/7-phases-of-a-data-life-cycle/
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‘Processor’ means a natural or legal person, public authority, agency or other body which 

processes personal data on behalf of the controller (GDPR Article 4, paragraph 7) 

 

Person(s) or agency(ies) responsible for specific datasets are defined. 

 

‘Controller’ means the natural or legal person, public authority, agency or other body which, 

alone or jointly with others, determines the purposes and means of the processing of personal 

data (GDPR Article 4, paragraph 7) 

 

Under the GDPR, processing of data is defined in exceedingly broad terms such that any agent 

interacting with personal data, in any way (i.e. at any step of the data lifecycle), are data 

processors and must be aware of, and comply with, GDPR-pertinent responsibilities. Both 

processors and controllers share responsibility for proper processing of data relative to the law. 

Moreover, the GDPR assigns individual rights that were not material to prior EU data 

protection statutes. As such, legacy data processes that pre-date May-2018 should be carefully 

reviewed with respect to the additional protections afforded by the GDPR.  These individual 

data protections (defined in Articles 12-23) include. 

 

The right to be informed: Data must be obtained and processed fairly and lawfully. To this 

end, study participants (also called data subjects) must be fully informed regarding the purposes 

of a study, how their samples and/or data will be used, the identity of the data controller(s)4 

and how study participants can exercise their rights under the law. 

 

The right of opposition: Study participants have the right to refuse the processing of their 

data. They also have the right to withdraw their consent for the processing of their personal 

data while their data are identifiable. 

 

The right of access: Study participants have the right to know what elements of their personal 

data are, or have been, processed and to access these data while their data remain identifiable. 

 

The right of correction: Study participants have the right to have their personal data corrected 

if inaccurate or obsolete. Study participants can demand that their data be deleted while their 

data remain identifiable. 

 

Data confidentiality: The data controller/processor must guarantee the confidentiality of the 

data and are responsible for implementing appropriate security measures. 

 

Data integrity: The data controller/processor must maintain the integrity of the data (i. e. avoid 

corruption, accidental loss or destruction).  
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Proportionality: Personal data cannot be processed for a period longer than necessary for the 

purposes of the study (i.e. study retention period). Personal data should be removed, destroyed, 

or made anonymous after that period. 

 

Data transfer: Personal data that have been collected or processed in the European Economic 

Area (EEA) cannot be transferred to an organization that is based in a country outside the EEA 

unless: 

 

1. the organization provides equivalent levels of protection for personal data or 

2. the country where the organization is located is recognized by the European Commission 

as providing adequate data protection or 

3. unless such transfer is expressly permitted by a data transfer agreement or the informed 

consent under which the data were collected. 

 

Education: The data processors must be aware of the requirements of the Regulation and must 

comply with the Regulation and with the principles and requirements of the Framework during 

the processing of personal data. 

 

The anonymization of personal data: The application of anonymization methods is an act of 

processing of personal data and, as such, it must follow requirements of the applicable data 

protection law and, where required, be authorized. Properly anonymized data is not considered 

personal data under the Regulation. 

 

Data re-identification: Attempts to bypass protection measures to identify a study participant 

are a violation of the Regulation. 

 

Data confidentiality and integrity principles apply to both personal and anonymized data. 

Moreover, integrity principles apply to personal data regardless of whether it is maintained 

privately or disclosed publicly. 

 

All the above principles must be followed regardless of the purposes for which the personal 

data is processed. This is true regardless of whether data are used for the purposes for which 

these data were originally collected or for purposes secondary to the original intent5. The 

ramifications for non-compliance may be severe with corporations that generate sizable 

revenues at risk for up to 4% of their yearly gross revenue should a court of law rule that such 

defendants have violated the GDPR and elect to assign penalties. Given the substantial 

financial risk, corporations have attempted to assess their existing information systems relative 

to the GDPR and remediate noncompliance as deemed necessary. Unfortunately, remediation 

efforts conducted to date (Feb 2019) which indicate that data processing systems should be 

reconfigured or replaced may not be justified given that GDPR case law has yet to emerge. 

However, identifying systems at risk with respect to the GDPR and reassessing information 

protection and risk management controls applied to these systems are likely valuable activities. 



Concepts in Information and Knowledge Management for Translational Research 

 

By reassessing information protection controls, including software development lifecycle 

artifacts such as design documents, organizations can demonstrate that deliberate actions were 

taken to address key GDPR tenets such as “privacy by design” and “privacy by default”. 

 

The GDPR states that information systems managing personal data must incorporate data 

privacy elements while designing the system. As the security model for most systems is 

delineated early in the design phase, this tenet will most likely be met, at least from the 

perspective of intent, even if a security measure may fail under certain operational scenarios. 

Privacy by default is intended to ensure that security measures are active when a system is 

operating in its baseline configuration. Both tenets can be demonstrated, at least partially, 

through software lifecycle requirements, design and qualification documentation and may be 

material to defense with respect to GDPR litigation. 

 

How EU courts will apply the GDPR, including the level of consistency of rulings across 

member states, is, of course, of great interest and will be closely monitored as case law emerges. 

To what extent courts will hold data processors and controllers responsible in cases of data 

exposure, or loss, predicated by the acts of malicious third parties is highly anticipated. Data 

theft and other related criminal activities can be difficult, if not impossible, to prosecute given 

the difficulty in identifying perpetrators. Even if perpetrators are confidently identified, 

jurisdictional impediments may prevent bringing cyber criminals to judicial proceedings. 

However, data controllers and data processors are culpable for data loss caused by criminal 

activity even if these controllers and processor were not party to the crime. 

 

It is important to note that the GDPR must often be interpreted in the interdependent legal 

framework generated by other EU and Member State statutes. An often discussed, and highly 

pertinent, example is the conflict between an individual’s right under the GDPR to have their 

data deleted (see Recitals 65 and 66, and Article 17 GDPR)  versus non-GDPR regulations that 

mandate long term retention of data and processing of that data for a variety of purposes. This 

applies for example, to data generated during clinical trials, especially for market authorization 

of a medication. More generally, erasure may be denied if the data processing is required “for 

compliance with a legal obligation which requires processing by Union or Member State law 

to which the controller is subject or for the performance of a task carried out in the public 

interest or in the exercise of official authority vested in the Controller”.  Although the GDPR 

sets out a number of clearly defined examples where the right to erasure applies and, equally, 

the situations where the data controller can deny such a request: for details, see: 

https://gdpr.eu/right-to-be-forgotten/. Clarification of these provisions may prompt the 

legislation of legal exceptions or, if challenged, will require litigation. 

3.3 Specific recommendations for maintaining regulatory compliance 

Biomedical researchers can either generate/collect and/or process personal data. There are 

several practical considerations to be addressed with respect to performing these activities in a 

compliant ethically-responsible manner. The data will, of course, need to be generated by a 

https://gdpr.eu/right-to-be-forgotten/
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legally and ethically conducted clinical trial that has been reviewed and approved by pertinent 

government authorities and internal review boards. Investigators must ensure that all sites are 

operating in compliance with national policies regarding data collection and transfer across 

national borders, these laws vary across nations within the EU (GDPR ch2 article 4 clause j). 

 

Investigators must assess their data collection, storage, and processing systems with regard to 

the requirements of the GDPR and ensure that their data processing activities comply with the 

applicable informed consent. Investigators must select an appropriate anonymization method 

if anonymization will be conducted. 

 

The GDPR does not explicitly define the term anonymization although recital 26 deals with 

the question of whether a subject is identifiable. 

 

 ‘To determine whether a natural person is identifiable, account should be taken of all the 

means reasonably likely to be used, such as singling out, either by the controller or by another 

person to identify the natural person directly or indirectly. To ascertain whether means are 

reasonably likely to be used to identify the natural person, account should be taken of all 

objective factors, such as the costs of and the amount of time required for identification, taking 

into consideration the available technology at the time of the processing and technological 

developments’. 

 

The data controller may consider the data to be de-facto anonymised if deanonymisation cannot 

be ruled out completely but is only possible with an unreasonable effort in terms of time, cost 

and manpower. De facto anonymization may be achieved through employing several methods 

that decrease the likelihood of re-identification. Anonymized data is not considered personal 

data within scope of the GDPR. Unfortunately, since anonymization is not an absolute process 

and depends on the information content of the dataset in question, there remain risks of 

potential GDPR non-compliance. 

 

At the time of this writing, the European Medicines Agency and the Heads of Medicine 

Agencies-led joint Big Data Task Force4 will likely address anonymization with respect to 

use/reuse of biomedical data, hopefully leading to unambiguous guidance regarding 

methodologies that, if followed correctly, will yield anonymized datasets that are out of scope 

of the GDPR. 

 

Investigators must appoint data controllers, establish systems for data processing and carry out 

risk assessments to determine the appropriate security measures for processing and retaining 

data. In the best-case scenario, institutions to which investigators belong will provide specific 

guidance and policies with respect to GDPR conformance. In addition to the rights of study 

participants noted prior, the GDPR mandates 72-hour notification in cases of data breach, data 

portability (i.e. the right of the individual to access and share their data which, in the case of 

clinical trials, may conflict with statues governing trial conduct) and the right of individuals to 
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demand that Data Protection Officers (DPO) be involved with data processing activities. 

Services such as breach notification, data portability and the availability of DPOs may be most 

efficiently provided as institutional services.  

 

Individual investigators would have the responsibility of creating data flows that minimize the 

processing of personal data, pseudonymizing data as early as possible (e.g. at the location of 

data generation/collection as is typically done for clinical trials), documenting the data flow 

plan, performing risk assessment and creating, and improving as necessary, the implementation 

of security measures (GDPR Recital 78). Completing a Data Protection Impact Assessment 

(GDPR Article 35, Recital 90) that formally documents the risks and mitigation strategies is 

recommended, at least, for large projects with complicated data flows. 

 

DPO appointment will be mandatory should regular and systematic monitoring of a large study 

participant population be required (GDPR Article 37). Select data categories, such as data 

relating to criminal convictions, will require the involvement of a DPO. A DPO that 

participates in a personal data project must be qualified to serve in the role based on established 

credentials, such as professional certifications, with respect to their expertise in implementing 

best practices associated with enabling dataflows that conform to legal constraints. The DPO, 

regardless of whether the role is fulfilled by an institutional employee or contractor, must be 

provided with pertinent resources to successfully meet the expectations of their role and are 

required to maintain their expertise, for example, by remaining professionally certified. An 

individual serving a project in the role of DPO should report to the senior level manager of the 

project.  

  

In circumstances in which the data of EU citizens will be processed outside of the EU, an 

individual must be appointed to oversee and approve such data transfer processes (GDPR 

Recital 80). Moreover, specific controls must be enacted should data be sent to organizations 

within a nation that has been identified by the EU as having not legislated adequate data 

protection statues. 

3.4 Data de-identification 

Data de-identification is the process of rendering personal data anonymous by removing 

identifying data elements or replacing these identifying data elements with unique alpha-

numeric codes such that knowledge of these codes cannot expose the value of the 

corresponding original identifiable data element. These deidentification codes allow datasets 

that were originally cross-referenced by personal identifiers to remain cross-referenced, and 

thus analysis-ready, following deidentification. 

 

As noted previously, pseudonymized data retains an intermediate reference, or key value, that 

allows personal identifiers in the original dataset to be discovered indirectly from the 

corresponding deidentification codes of pseudonymized datasets. If this intermediate key 

value, also an alpha-numeric code, is destroyed the pseudonymized datasets become 
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anonymized. The intermediate key value and deidentification codes are typically generated 

using a well understood hashing algorithm, such as MD5. These hashing algorithms ensure that 

manufactured codes are unique and, to a pragmatic impossibility, prevent the original identifier 

from being computationally reconstructed from the intermediate key. To limit the chances of 

improper re-identification of pseudonymized datasets, the GDPR (Article 4, paragraph 5) 

mandates that intermediate keys be maintained separately from the identified datasets that these 

keys reference. Furthermore, the chance for reidentification must be further limited by 

establishing organizational measures to properly manage re-identification of pseudonymized 

datasets when warranted. Certain anonymization applications (e.g. DWISE Blur, 

http://www.dwise.com) can, if desired, generate a risk of reidentification probability and ensure 

that datasets are anonymized to attain a user-defined risk of reidentification threshold.  

 

Data access limitations applied in concert with data deidentification constitute reasonable 

control measures for clinical data. Data that is distributed to the public domain must, of course, 

be anonymized.   

 

The following are examples of direct identifiers that must be deidentified to realize an 

anonymized dataset. 

 

Names of persons or relatives  

Addresses (post, email, url, etc.)  

Telephone Number 

Social Security 

Driver’s License 

Vehicle License plate 

Professional Certificates/Licenses 

Any Account (e.g. bank account) 

Any Record (e.g. medical records) 

Photos, Facial and/or Body  

Biometric Identifiers (e.g. finger or voice prints) 

 

The following are examples of indirect identifiers that must be removed or transformed to 

realize an anonymized dataset. 

  

Absolute dates and times (e.g. dates of birth, disease onset, treatment start) can be replaced by 

relative values such as age, days post baseline visit, etc. If absolute times are required these 

should be approximated, to the closest hour or time-period (e.g. between 8:00 and 8:30) if 

possible. 

 

Birth date conversions to age, typically in years, can be specialized for pediatric studies (age 

in months) and geriatric studies (> certain age if the age itself is rare, e.g. >90). Continuous 

values can be replaced by ranges, e.g. 10-20, 21-30, etc., if possible. 

http://www.dwise.com/
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Addresses can be converted to geographic regions having population sizes of at least 10 million. 

 

Names of study sites should be coded.   

 

Genetic data is a special case. The investigators must determine whether genetic datasets are 

complete enough to be identifiable. For example, low density genotype profiles (e.g. Taqman 

Low Density Arrays) having a limited number of genes may not uniquely identify the 

individual associated with the profile. However, microarray genotyping, whole exome 

sequencing and whole genome sequencing represent progressively greater risks for 

reidentification with each of these techniques carrying substantial risk for reidentification 

should copies of these datasets, or separately generated genetic assessments, be discovered with 

corresponding personal data. Investigators should reduce the content of these datasets if 

possible but must otherwise protect against dataset exposure. The potential to computationally 

obfuscate genetic datasets for use in standard genetic analyses is limited at the time of this 

writing. 

 

Clearly, some directly or indirectly identifiable data elements may need to be retained to 

perform analysis (e.g. ethnicity, gender). Investigators will need to deidentify values as best as 

possible and further rely on limiting exposure. 

3.5 Data use consent and ethical considerations 

Several constructs have emerged regarding the sharing and reuse of human data. The popular 

FAIR (Findable Accessible, Interoperable and Reusable) data principles, discussed more fully 

in Chapter 4, promote long term valuation of medical data through management ideals. The 

TRUST principles provide a corresponding ethical framework with respect to data distribution.  

 

Transparency. Data subjects are informed of data users’ requests if they wish, and data 

breaches when required 

Reciprocity and reward. The contribution of stakeholders (data subjects, data providers, and 

data users) is acknowledged or rewarded in a study 

Universality. The use of data is open to any registered data users if that use is authorized by a 

national law and/or a data subject 

Security. Data are processed in a controlled environment. Data users and their requested 

processes are recorded for auditing purposes 

Tiered data use. The authorization of data use depends on the data type, the analysis purpose, 

the data user’s profile, the analytical algorithm that a data user wants to use, and the data 

subject’s will. 

 

The GDPR mandates action supporting the Transparency principle, specifically with respect 

to disclosure in the event of a data breach. The GDPR also addresses the Security principle by 

mandating security strategies be included during design and security implementations be 
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operational by default. Reciprocity and Universality are reasonable ideals to promote within 

the scientific community but do not address patient privacy concerns. The Tiered data principle 

would stratify the protections of data based on the applied data summarization methods. For 

example, individual genotypes clearly carry higher risks with respect to patient identification 

if disclosed than do genome wide summary statistics, which no longer have an individual 

affiliation. The former must be managed in compliance with the GDPR, the latter are typically 

released to the public domain. Although proponents of the TRUST paradigm may envision 

specific auditing processes with respect to reuse of personal data, the historical control for 

ensuring data is used in an appropriate manner is via informed consent. Additionally, data use 

contracts between data controllers and data processors typically forbid redistribution by data 

processors. 

 

The precise text of informed consent clauses is exceptionally difficult to draft. Base templates 

of these clauses often need to be modified not only on a per study basis, but often on a per site 

basis within a single study to accommodate local legal restrictions and preferences of internal 

review boards. These clauses must declare explicitly the types of research for which reuse of 

patient data is proposed in a form that can be easily understood by study participants such that 

an informed decision can be made. Although consents are often formulated to permit potential 

secondary data use, the breadth of the text must be modified to limit data reuse to, for example, 

specific biological specimen types and disease-specific research (GDPR Recitals 32, 33). 

 

Given the diversity of consent clauses across, and potentially within, studies it is imperative 

that consents be reviewed in detail prior to taking actions of the following types. 

  

1. Transfer of a study participant’s personal data to a third party. With respect to EU 

citizens, if the third party is based in a country that is outside the EEA and not 

recognized by European Commission as providing adequate data protection, a 

controller or processor may transfer personal data only if the controller or processor has 

provided appropriate safeguards, and on condition that enforceable data subject rights 

and effective legal remedies for data subjects are available (GDPR Article 46, Recitals 

108 and 109). 

2. Collection and use of special categories of data. In addition to medical and health 

related data strata such as genetic and biometric data, demographic data including 

ethnicity/race, political opinions, religious/philosophical beliefs, trade union 

membership and sexual orientation should be carefully considered before collecting or 

disclosing to a third party. 

 

If a consent restricts data use with respect to a certain purpose, there may be allowable 

exceptions based on local pertinent law. However, it is imperative that data controllers fully 

understand the applicability of such exemptions before using or sharing data for purposes not 

authorized by the consent. In the absence of exemptions, reuse of data for purposes restricted 

by consent will require a new or supplementary consent form to be authorized by the study 
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participant. There are tools for expediting new or supplementary consent forms provided by 

certain scientific organizations or large-scale projects such as the Public Population Project in 

Genomics and the International Policy Interoperability and Data Access Clearinghouse (P3G, 

IPAC).  

 

Of course, data controllers and processor must clearly understand how their intended research 

plans align with pertinent data protection statutes. Establishing that the data of interest are 

indeed personal in nature is the crucial first step. Anonymization of the study participant’s 

personal data for which the participant has consented for reuse removes the classification of 

personal data with respect to the GDPR. However, consent with respect to anonymized datasets 

may still be pertinent given alternative national or organizational criteria under which the 

researcher must operate.  

 

If the data are determined to be personal in nature, there may be multiple legal and 

organizational entities that govern the use of data for distinct purposes. Therefore, it is 

important for data controllers to itemize their research intentions to determine which statues 

apply to each aspect of their intended use of individual data. For collaborative situations 

involving sharing of data across multiple data controllers, it is important to formally delineate 

the controller and processor roles for each collaborative dataset. The data controllers are 

responsible for determining and governing allowable use by data processors. Data processors 

are responsible for the technical implementation of the data flow provided such 

implementations conform to the governance set forth by legal statutes as well as any 

supplemental instructions mandated by the data controller. European data processors are bound 

to operate in compliance with the data protection statutes of their country of residence 

regardless of the country of residence of the associated data controller. Figure 3.1 shows a 

decision tree that can be used to ensure ethical and legal compliance when granting access for 

data re-use 

 

Data controllers and processors can of course, at their discretion, mandate and govern 

processing rules that are more restrictive than those required by applicable law. 

 

With respect to the European Economic Area (EEA), if the data controller is European, their 

corresponding data processors must comply with the data protections laws of the country in 

which the data controller is based. If a data controller is not European but uses data processors 

within the EEA the data processing must operationally comply with the data protection laws 

of the country in which the data processor is based. European study participants must consent 

specifically to their data being transferred outside of the EEA should the data controller and 

processor entities not be based within the EEA and the country in which the controller resides 

is not recognized by the European Commission as providing adequate data protection. 
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Figure 3.1: Decision tree to ensure legal and ethical compliance when granting data access in biomedical 

research projects. 

3.6 Summary 

Data protection is a critical topic with respect to maximizing the value of data collected in the 

clinic. Patients participate in clinical trials based, at least in part, on the understanding that their 

data may benefit others, and these benefits are more likely to occur if the data are widely 

available. Indeed, the International Committee of Medical Journal Editors considers 

responsible sharing of clinical trials data to be a moral obligation. Medical technologies are 
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greatly facilitating the collection of a wide breadth of complex medical data. Computing and 

communications technologies are enabling the rapid and broad distribution of these data for 

use in novel translational research proposals. The potential to substantially better the lives of 

current and future patients is extraordinary, however, disclosure of sensitive personal 

information may have traumatic effects on individuals. Investigators, and the scientific 

associations to which investigators belong, must balance the medical potential of data reuse 

with the respect for an individual’s right to determine when, and for what purpose, their 

personal data may be (re)-used. 

 

Legal frameworks such as the General Data Protection Regulation provide broad operational 

and governance constraints to guide data reuse policies. However, such policies do not 

explicitly inform the development of project-level dataflow implementations. Case law in 

which these statues are, and will continue to be, tested will slowly emerge and help codify 

conforming implementations. Nonetheless, research organizations have no choice but to 

assume compliance risks to progress their scientific endeavors. Adherence to an ethical system 

based on demonstrating respect for individuals through responsible data sharing is 

foundational. Such adherence will promote confidence and resolve for researchers operating 

within unfamiliar, uncertain and sometimes contradictory legal contexts. The moral tenets of 

the Global Alliance for Genomics and Health5 are representative of the pillars of such an ethical 

framework. 

 

Respect individuals, families and communities 

Advance research and scientific knowledge 

Promote health, wellbeing and the fair distribution of benefits 

Foster trust, integrity and reciprocity 
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Chapter 4: Data Management 

Ibrahim Emam 

4.1. Translational research data management  

Translational research (TR) is often described as a data intensive discipline.  The granularity, 

scale and diversity of data collected and observed during a TR study proves intrinsically 

challenging to process, analyze, and interpret. Phenotypic data, such as demographics, 

diagnosis, lab tests, clinical events and medications are collected during clinical studies and 

hospital encounters. Moreover, the generation of high dimensional molecular profiles including 

genomics, transcriptomics, proteomics, and metabolomics datasets from physical biospecimen 

are becoming routine. 

 

Integration and analysis of such diverse high-volume data presents an informatics challenge 

which has led to the emergence of translational bioinformatics as a discipline 1,2. However, 

integration and analysis are elements of a broader TR data life cycle3, an elaborate process to 

collect, curate, store, integrate, find, retrieve, analyze, and share data (Figure 4.1). Together, 

these stages form a linear data pipeline which often depends upon communication and feedback 

between multiple colleagues serving in various roles, including data curators, data managers, 

clinicians, and bioinformaticians. Conducting research data assets throughout this data pipeline 

presents a data management challenge with respect to improving the efficiency of the research 

process, data reuse and long-term preservation of data. Thus, effective research data 

management is critical for enabling TR data analysis and, as such, is an essential cornerstone 

of successful TR studies. 
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Figure 4.1: Research data life cycle 

 

Over the past few years, translational research platforms have been developed to tackle the 

challenges of integrating and analyzing combined sets of clinical and omics data. Recent 

reviews of non-commercial solutions4,5 demonstrate their relative success in providing; 

 

1. storage and integration of clinical and molecular data 

2. analysis context for researchers to investigate, visualize and explore their data 

3. data enrichment through integration with external information resources. 

 

These platforms provide solutions for TR studies by enabling integrative data analysis, 

generation and validation of physiological hypotheses, data exploration, and cohort discovery6. 

However, these platforms focus on supporting the analytical stage of a project ensuring that 

intended scientific goals are met during study conduct.  Other platforms such as dbGap7 and 

ImmPort8 offer an archive solution to preserve data following the termination of the project for 

which these data were generated. However, such solutions do not play a role while the study is 

ongoing. 

 

Figure 4.1 illustrates a typical research data life cycle, highlighting in detail the different stages 

of the pipeline between data collection and data analysis. A data custodian is responsible for 

the technical control and infrastructure that supports such a pipeline. Many translational 
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research platforms, while addressing the needs of data storage, integration and analysis, lack 

data custodianship, which is critical. Establishing a data governance policy, and allocating a 

data custodian to implement this policy, is essential to promote data as a primary asset of a TR 

study and to maximize the value of this asset. Diligent data governance not only enhances the 

efficiency of the research process but also facilitates sharing and re-use of the resulting data 

asset thereby increasing the return on investment of the study. Thoughtful governance 

processes also promote conformance to the FAIR data principles9, discussed later, that seek to 

create a culture of data reuse within the scientific community. These principles are established 

by decisions and actions taken at each phase of the data pipeline. 

 

One of the key functions of a data custodian is to implement and enforce data and metadata 

standards, touched on in chapter two and to be elaborated further in this chapter. Metadata 

describes data values. For example, a meta data label of “Heart Rate” describes a physical value 

that is a numeric data type that measures 60 units of beats per minute for the average human 

being. The data standard for heart rate may be defined to be a whole number, defined in a data 

system with the label “Heart Rate”, that is equal to or greater than zero with the number -9999 

representing a missing value.  Various stages of the data life cycle in TR research, such as 

discovering, reusing, sharing, and analyzing data rely on the use of metadata and data standards 

to be efficient10. TR data standards refer to the selection of coding terminologies or ontologies 

such as SNOMED-CT, LOINC, MedDRA and ICD, against which data is annotated. Standards, 

however, also pertain to consistent metadata labels, formats and data types as well as common 

data elements (CDE). Data provenance, recording a chain of custody for data values as these 

progress through the processing pipeline, is established by capturing events, such as data 

transfer between systems, by referencing the data value, its corresponding metadata and the 

event that processed the data value. Several recent reviews suggest that the failure to implement 

data standards is major challenge of translational bioinformatics and is often due to a lack of 

understanding regarding how to select and use applicable data standards11 12 13. In the domain 

of clinical research, the Clinical Data Interchange Standards Consortium (CDISC)14 offers 

several standards that describe data at different stages of the clinical research pipeline. 

Similarly, in the domain of molecular assays (‘omics), the Investigation, Study and Assay 

(ISA) model 15  offers community driven standards for describing assays across different 

technologies. The eTRIKS standards starter pack16 provides guidance on the adoption and use 

of data standards relevant to TR including those for preclinical, clinical and ‘omics research.  
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4.2 Data asset management 

An asset is an economic resource that can be controlled or managed and that holds or produces 

value. Data is widely recognized as the main driver of research, the main currency that feeds 

the analytical processes and frameworks to derive knowledge from data. However, managing 

research data as assets is an uncommon undertaking in the scientific community. Viewing data 

as an asset assigns value to data when it is consumed or applied. The corresponding return on 

investment, a.k.a. data exploitation, increases as the cost of data planning, acquisition, 

maintenance, and enablement is minimized.  

 

A data asset management framework ensures that definition, documentation, collection, 

storage, and processing of data results in consistent, predictable, and appropriate data quality 

to drive scientific analysis.  The FAIR data principles are intended to promote data distribution 

and use by advocating that research data should be Findable, Accessible, Interoperable, and 

Reusable (FAIR). However, realizing the FAIR principles in practice for real-world datasets 

requires data lifecycle management and thoughtful transformation of data into readily useable 

formats.  

 

This section provides an overview of some of the key foundational ideas and principles needed 

to establish a data asset management framework. The enterprise data management approach 

for expediting scientific data analysis, including data classification, transformation and 

management will first be detailed.  The second part of the chapter will present a comprehensive 

general data model that defines metadata pertinent to translational research and describes the 

relationships between these metadata. This data model can be used to support a wide breadth 

of exploratory biomarker projects. 

4.2.1 Data categories 

Managing data is made more complicated by the fact that there are different types of data that 

have different life cycle management requirements. Data categories are groupings of data with 

common characteristics or features and are useful for managing the data because certain data 

may be treated differently based on their classification. In an enterprise data management 

system, data can be classified by function (e.g. transactional data, reference data, master data, 

metadata), by content (e.g. data domains, subject areas), by format or by how and where the 

data is stored and accessed. 

 

The four most commonly described data categories are described subsequently. 

 

● Transactional data describes business events. These are the common transactions that 

take place as an organization conducts its business. Transactional data always has a 

time stamp, often is, or includes, numerical data elements and can refer to one or more 

objects (i.e. combinations of data elements that describe a real word concept). Examples 

include sales order, purchase order, or a ticket purchase. 
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● Master data describes tangible business concepts upon which business activities are 

carried out. Master data includes the details (attributes and identifiers) defining core 

business concepts that are critical to the operation of an organization, such as its 

customers, products, employees, materials, suppliers, services, shareholders, facilities, 

equipment, and rules and regulations. Each information domain (e.g. an organization) 

will use a master data collection suited to its processes. 

 

● Reference data are standard, agreed-upon codes that facilitate the use of transactional 

data within an organization and, as necessary, across collaborating organizations. 

Reference data management is intended to standardize the codes used across the 

enterprise to promote data interoperability. Reference data define the set of permissible 

(domain) values that can be used in master data fields (e.g. 'M', 'F' could be the valid 

values for a data field describing gender). Domain values that are defined and enforced 

to ensure data consistency and clarity with respect to the meaning of data values to 

minimize misinterpretation by data consumers.  

 

● Metadata is data that describes or labels transactional and master data. Metadata are 

used to store, retrieve and interpret data values and are the primary means of organizing 

information systems. Thoughtful definition and use of metadata promotes data quality 

and is integral to the creation and management of databases as well as applications that 

read/write/modify data to/from/within such databases. 

 

This data categorization applies to data associated with scientific research. Translational 

research generates medically related observations associated with study participants such as a 

disease status, a treatment regimen or a hereditary trait. These transactions are represented with 

data values (e.g. “60”) associated with corresponding metadata (e.g. “Heart Rate”). This 

observation will likely be associated with a master data concept (e.g. “vital signs”) an be 

expected to conform to established standards (e.g. must be a whole number greater than zero) 

or entered as -9999, matching a reference data value, should the observation be expected but 

missing from the data set. All negative numbers other than -9999 would be in violation of the 

rules pertaining to storing the heart rate observation as data and should, for example, generate 

an error if such a nonconforming value attempt to be entered into the clinical information 

system. 

 

Figure 4.2 shows an example of data from a clinical study illustrating the breakdown of the 

data into the categories discussed above. A study recorded an observation about a patient who 

had a severe headache as an adverse event on day 6 of the study. The severe headache episode 

is an example of an observational data point. The observation is given context by the master 

data associated with the study and subject such as the subject identifier, age, sex, the study 

cohort to which they belong, and the study in which they participated. The study master record 

contains more information such as the details of the study visit during which this observation 

was recorded. The string values used to describe the name of an adverse event, e.g. 'Headache', 
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and the severity of the event, e.g. 'SEVERE', are verified using reference data values that are 

pre-configured for this study to maintain consistency across observations. These terms are 

coded and come from standard vocabularies such as the MedDRA dictionary for adverse events 

and the CDISC SDTM terminology. Finally, the description of the fields that describe the 

elements of the observation are defined by metadata. Each field has a description. The set of 

constraints and the rules that specify the reference data to be used for each field (not shown in 

the figure) are also defined as part of each field's metadata. 

 

 
Figure 4.2: Data categories in biomedical data 

 

 

4.2.2 Data dynamics 

Data life cycle 

That data has a life cycle has long been recognized in the field of data management. The data 

life cycle has three general phases: 

 

1. the origination phase during which data are first collected. 

2. the active phase during which data are accumulating and changing. 

3. the inactive phase during which data are no longer expected to accumulate or change, 

but data are being applied or used.  

 

English 17 refined these stages and formulated a five-phase data life cycle. 
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● Planning phase: Planning includes identifying data to be collected, defining data 

elements and developing data models. 

● Acquire phase: Processes that acquire information are comprised of the business 

processes and computer applications that “create” data. 

● Maintain phase: Processes that maintain information are comprised of the business 

processes and computer applications that “update” data. 

● Apply phase: the actual use of the data in ways that add value. 

● Dispose phase: When data is no longer needed it is disposed of or deleted 

 

McGilvray18 later extended the model by adding a “store and share” phase and naming it the 

POSMAD life cycle model, an acronym for Plan, Obtain, Store & Share, Maintain, Apply and 

Dispose. Data management decisions such as the use of online, near line or offline data storage 

services can be informed by the lifecycle process. 

4.2.3 Data flow 

Throughout its life cycle, data may be cleansed, transformed, merged, enhanced or integrated. 

As data are used or enhanced, new data are often created, so the life cycle has internal iterations. 

The life cycle model describes phases with logical dependencies, not actual data flows. There 

can be multiple ways that any piece of data or set of information is obtained, maintained, 

applied, and disposed.  In actuality the data can also be stored in more than one place as data 

moves through different processes whether during data collection or during data processing. 

Data flows may go round and round through these phases, e.g. from data maintenance back to 

data creation and then returning to data maintenance and so on in more cycles. A data flow is 

the movement of data. Data flows are documented by data flow diagrams which provide a way 

to document the movement of data between data sources and data sinks (the places where data 

are stored) and the operations conducted on them. 

 

Figure 4.1 shows an example of a data flow in translational research context. In a typical 

translational research project, datasets are generated from different sources and stored in 

project-specific operational databases, which are specially tailored for data collection and 

management of day-to-day operations. Data from these databases are usually exported, 

cleansed, validated, and merged using various Extract-Transform-Load (ETL) processes to 

produce a reliable non-redundant collection of curated datasets, parts of which become subject 

for queries through data marts or data warehouses designed for analytical purposes and specific 

groups of users. 

4.2.4 Data lineage 

Data not only has a life cycle, it also has lineage (i.e. a pathway along which it moves from its 

point of origin to its point of usage, sometimes called the data chain). Understanding the data 

lineage requires documenting the origin of data, as well as their movement between sources 
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and sinks, and transformation through data processing phases. To effectively manage data 

through these phases, we will need to identify these states that data sits at between and during 

these phases. This will help us identify the different states of data assets that will be subject to 

data management (Figure 4.3). 

 

 
Figure 4.3: Data asset lineage showing the different states of data throughout the different phases of the data life 

cycle 

4.3 Identifying life cycle states of research data 

A data model, a schematic of data elements and their relationships, is created to represent data 

within an information system. The model is comprised of a set of metadata that describes the 

transactional data which will be captured by the data flow. Related metadata are organized into 

master data concepts to better represent the business process. Related master data concepts are 

in turn referenced to further represent the business process. For example, a clinical study is a 

master data concept comprised of a study identifier, title and other descriptive data. A study 

participant is also a master data concept comprised of a site/subject identifier, gender, ethnicity 

and other descriptive transactional data. However, study and study participant are related in 

that a study will have zero, one or more study participants. Therefore, the master concept of a 

study includes the master concept of a study participant and this relationship is expressed in 

the data model. 

 

The details associated with modeling data within an information system will next be described. 
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4.3.1 Data elements 

The international standard ISO 11179 defines data as "a re-interpretable representation of 

information in a formalized manner suitable for communication, interpretation or processing". 

The transactional data elements in a hypothetical research workflow should be identified during 

the planning and design stage. Research projects in scientific studies start with the formation 

of research questions about various phenomena under study. These phenomena have 

observable information that can be represented by data values. For each phenomenon of 

interest, a researcher must determine what information is needed and how that information 

might be obtained. The requisite information obtained (usually measured) from the phenomena 

will be represented as data values. The international standard ISO/IEC 11179 formalizes the 

association between real-world phenomena of interest, the observation method, and the 

resulting data value into the concept of a 'data element'. Functionally, a data element provides 

the meaning behind a measurement by associating its data value (e.g. a specific number (27)) 

with a metadata descriptor such as Body Mass Index (BMI). As an example, the number 27 is 

a reasonable value for either BMI or age such that the meaning of the data value cannot be 

inferred from the value itself. However, when the value is measured (27) it is assigned 

explicitly to the appropriate metadata (BMI) ensuring that the value will have the correct 

meaning when entered into the data flow. 

 

As a data building block, the Data Element will play a role in all states of data whether at the 

planning and design phase, the collection phase or later during the integration and 

harmonization phase. In the context of research data life cycle management, the role of a Data 

Element is to manage the `meaning' of a data item. This is not the same role provided by 

concept definitions that are often assembled in data dictionaries or ontologies. The 

informational value that is embedded by the elements constituting the ISO/IEC 11179 defined 

Data Element model provide much power and control over the semantics of a single data item 

rather than providing a simple definition. This is due to the separation of operational meaning 

from the conceptual meaning which we discuss in more details in section 4.4.1 

4.3.2 Created data 

During the `collection and acquisition' stage of a data life cycle, decisions about what data to 

collect culminate in data collection activities. It is during these activities that observable data 

is created by obtaining values for the set of planned and designed data elements about the 

phenomena of interest subject to research. 

 

In a research study, there are many different ways that data values are obtained depending on 

the source, modality and method of acquiring data. For example, in a clinical trial a screening 

event collects data via a Case Report Form (CRF), in primary care data during a patient visit 

is recorded in electronic Health Records (eHR), medical reports or in medical images, while 

in molecular profiling assays, data from patient samples are obtained using instruments and 

software tools that outputs data in the form of standard or proprietary formatted files. 
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Data at this stage is sometimes referred to as `raw data' in reference to its processed and 

curated form later in the analytical phase. However, in reference to its function and purpose 

during its life cycle, data at this stage exists in a state that can be referred to as Created Data. 

Created data can exist in many different forms and structures. However, the common 

property that exists for all forms of created data is that they are optimised for managing the 

data collection process within the environment or system generating them. For example, data 

collection forms are designed in a way that facilitates data recording and database models 

supporting this activity will also be optimised for data entry. Data in this state is not (and 

usually should not be) optimised for other data related processes such as sharing, archiving, 

exploring and analysis.  

 

Therefore, in a research data management context, using data in their `as created' state for any 

other research activity other than obtaining, creating, and growing the data should be 

discouraged. In a typical study, raw data will be collected by different people, systems, and 

organizations that will eventually be transferred to the research information system. To manage 

these data files as collected data assets, it is important to ensure that for each data asset, the 

associations between its content and the set of data elements it represents, as well as the context 

in which it was acquired is maintained as the data transfers to the research information system. 

4.3.3 Primary data 

One of the main objectives and motivations of the FAIR data management model is to enable 

and support data re-usability as well as data re-purposing. It is arguable that well annotated and 

described processed and derived analysis-ready data is re-usable data but it is only re-usable 

for the analysis workflow that it was purposefully processed for. In this case, this data can be 

used for reproducibility of research results. However, re-purposing data for different analyses 

and for different research questions than the original data owners proposed would not be 

possible due to the data's derived and transformed state. 

 

“Primary Data” is one of the managed states of data during its life cycle. Data in this state 

should exhibit well defined structure, syntax, and semantics that permits the interpretation of 

data by humans as well as machines. Projects' research workflows often skip over this stage of 

the data life cycle and fast forwards to using the data in analysis for the purpose of investigating 

the project's own research questions and producing its own deliverables. 

 

From a FAIR data management perspective, primary data are important research data assets 

that fulfil the purpose of long-term value preservation of data supporting its re-use and re-

purposing.  
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Primary data is study-centric, meaning it reflects the design and planning decisions of the study 

or project that generated them in order to preserve the context and purpose for which the data 

was originally designed and collected. Figure 4.4 illustrates the concept of study-centric data 

organization. This is important to guarantee the integrity and reliability of these resource in 

serving reproducible research.  Creating and describing primary data becomes the target output 

of the data curation activities that otherwise are channeled to produce processed and aggregated 

secondary data that is fit for single-use project-focused analyses.  

 

The structure and the organization of data in the primary state should hence be optimised for: 

 

1. data manipulation, data curation and data quality tasks. 

2. preparedness for long term storage with metadata being associated with the dataset 

itself 

3. data sharing and reuse preserving the context within which data was generated at an 

appropriate level of granularity. 

 

These requirements influence the design of the data model for primary datasets, which is 

presented in section 4.4.3 

Figure 4.4 Study-centric view of Translational Research Study. Translational research studies generally produce two main 
categories of data: (1) low dimensional clinical and subject data, and (2) high-dimensional molecular characterization data 
that result from the different 'omics assay technologies. The first category profiles subjects (patients, animal models, cell 
culture...etc), while the second profiles the molecular activity in samples extracted from these subjects. Together, data from 
both categories are organized and defined with respect to a study, which provides the context for generating and analysing 
such data. 
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4.3.4 Integrated data 

 

In data intensive research projects, data integration is often seen as the primary data processing 

task and the first go-to step after data collection. The main challenge that drove the 

development of translational research platforms was to create an environment for researchers 

to navigate the complex data space spanning clinical and 'omics observational data. This 

environment would typically involve the development of a common data model to persist data 

in an integrated form and a set of data manipulation processes that extract data from sources, 

transform and integrate extracted data according to the data model, and finally load the 

integrated data into a data storage. Following this ETL process data becomes available for 

analysis.  

 

Defining the data integration model involves understanding the data integration requirements. 

These requirements are usually dictated by the individual project objectives or an organization's 

business needs. For example, the review paper by Canuel et al. discussed in the previous 

chapter highlights the different integration models offered by the different translational 

platforms depending on the initial aims of each platform and the community, organisation or 

project it supports.  

 

There is no doubt data utilization should be driven by data consumers; however, integration 

requirements defined this way are subjective to the format and queries of the direct data 

consumers. This may be efficient for a single use of data, but it greatly reduces the potential 

for data re-use as a result of the transformations and summarization that data is subjected to 

during this stage. Summarizing data often results in information loss unless a more prohibitive 

and expensive process is put in place and that is data lineage or provenance management. 

 

From a data life cycle perspective, data in an integrated state should objectively reveal the 

functional relationships that exist between the various data elements that were chosen and 

designed during the planning phase. When a researcher plans a study, they will choose to 

collect data and acquire measurements from different sources and domains, yet they would all 

collectively contribute to understanding the phenomena under investigation. An observation 

about the occurrence of headache might be recorded but the pattern of occurrence is also 

recorded and an exposure to a treatment might be related to this observation. Also, blood test 

measurements might be recorded for this person and these measurements can reveal a bit more 

about the level of toxicity caused by the treatment. These implicit relationships should be 

established in the data model to enable a meaningful and contextual navigation of the observed 

data. 

 



Concepts in Information and Knowledge Management for Translational Research 

 

 
Figure 4.5 Observation-centric view of Integrated Data 

Therefore, integrated data should be observation-centric as illustrated by Figure 4.5. The data 

model developed for it should be optimised to reveal and establish all functional relationships 

that exist amongst all collected and recorded observations. A life cycle management approach 

should therefore ensure that the metadata that is necessary to build this model is available and 

well described before the data integration process is executed.  

 

To sum up the states we have discussed so far, data during data collection is optimised for 

recording and acquiring the observed values for the planned and designed data elements. 

Following the consolidation process, observations that are collected together are grouped in 

logically defined and structured primary datasets optimised for data transfer and archival. 

Similar to the genetic information in a chromosome state, primary data is not organized in way 

that is optimised for examining and exploring functionally related observations and findings. 

The purpose of integrated data is to establish and reveal the functional relationships that 

implicitly exist between the hundreds or sometimes thousands of data elements that were 

designed to reflect the research requirements of the data owners/producers. Data consumer 

requirements are reflected onto another distinct state of data, which is discussed in the 

following section. 

4.3.5 Secondary data 
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Data is valuable only when it is consumed or applied. The ultimate purpose of managing data 

through the design, acquisition and maintenance phases is to derive the most value from data 

once it reaches its usage phase. In research, this is realized when data is efficiently and 

purposefully used by scientists to perform their research analyses and improve their 

understanding and scientific knowledge accordingly. 

 

The usage stage is therefore characterized by a change in function and purpose of data to reflect 

the requirements of data consumers. From a data life cycle perspective, this is a shift from the 

management requirements of a project's data producers and data custodian, which were 

reflected on the previous stages to those of the data consumers such as analysts and external 

users. In the Open Archival Information System (OAIS) model, data at this stage is referred to 

as `The Dissemination Information Packages (DIP)' that are produced in response to queries 

from data consumers. 

 

Secondary data essentially represent a different state of data leaving the primary and integrated 

state to be in a hypothesis-focused user-initiated state that is being prepared for use. This 

distinction is key to the sustainability of data through re-use and re-purposing because it allows 

the influences of the two main stakeholders, the producers and the consumers, not to interfere 

with one another.  

 

Figure 4.6 Secondary data as a user-centric view of 
research data 
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Unlike primary data, secondary data is therefore user-centric as depicted by Figure 4.6. This is 

because users who are interested in analyzing data will almost have to have their own footprint 

on the retrieved data before they use them in their analyses. This can include running their own 

queries to create different subsets of data from different projects to compare or summarize 

results, deriving new data or modifying content of the queried data to suit their needs, or adding 

their own metadata to describe the content they have retrieved with respect to their hypothesis.  

 

Secondary datasets are similar to Primary datasets in the requirement to be structurally and 

semantically annotated with rich metadata, but they differ in their use and the purpose they 

serve. Secondary datasets' primary role is to support efficient generation, replication, and 

review of analysis results.  The overall principle in designing secondary datasets and related 

metadata is that there must be clear and unambiguous communication of their content, source 

and quality to be able to communicate it with other researchers for sharing and reproducibility.   

 

Data will transition from the integrated state to the secondary data state through the process 

of data exploration and retrieval. This is when users use services like querying, retrieval and 

visualization that operate on the integrated data to select a subset of data elements to create a 

new dataset which becomes an input to their analysis. A Secondary dataset will contain data 

from different domains, different studies and most importantly derived data that reflect the 

needs of a researcher to run a particular analysis. Data at this stage also crosses the boundary 

between the custodianship environment and the analytical environment. 

 

Secondary datasets should exhibit the following characteristics to fulfill their purpose. 

 

1. Secondary datasets must provide traceability to show the source or derivation of a value 

or a variable (i.e., the data’s lineage or relationship between a transformed value and its 

pre-transformed source value). The metadata must identify when and how analysis data 

have been derived or imputed. 

2. Secondary datasets must be associated with metadata to facilitate clear and 

unambiguous reporting. 

3.   Secondary datasets should have a structure and content that allow statistical analyses to 

be performed with minimal programming. Such datasets are described as “analysis-

ready.” 
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4.4 A metadata management framework for translational research  

The primary purpose of the translational research metadata framework (TREMF) is to create a 

common metadata management framework for translational research studies using existing 

community driven standards. The TREMF design is influenced by the Meta-Object-Facility 

(MOF) specification 19 , the CDISC standards (SDTM, SDM-XML, PRM) defining data 

standards and models for clinical data representation in different forms, the ISA-TAB 

specification 20  for describing molecular-assay metadata, and the Observation pattern 

developed by Fowler and Odell21. The central theme of the TREMF approach to metadata 

management is extensibility and consistency. The aim is to provide a framework that supports 

the addition of new data types, while maintaining a standard and domain specific representation 

of data. To achieve this, the TREMF was designed based on a three-layered architecture as 

illustrated in Figure 4.4. Each layer is concerned with a different aspect of metadata 

management. Collectively, they form a comprehensive metadata management framework for 

the standardization, integration, and harmonization of translational research data. The first 

layer is the domain model describing the study, its main elements and the relationships between 

them. It establishes the context for data integration. The second layer is the ‘Dataset meta-

model’: an extensible meta-model based on community standards describing data in the form 

of a ‘dataset’ to support standardization of data ingestion. The third layer is the ‘Observation 

meta-model’ describing data in the form of an ‘observation’ to support data harmonization for 

analytical queries. In the following subsections, we discuss each layer in detail. 
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Figure 4.4: Translational Research Metadata Management Framework 

4.4.1 Layer one: Data Element 

Decisions about what data to collect start with the formation of research questions and 

culminate in data collection instruments, either user-enterable forms or devices to collect values 

for specific data elements. Documentation of data element definition is one of the most 

important artifacts for a study and these definitions are usually presented as data dictionaries. 

Data dictionaries contain a list of data elements that are labeled (e.g. BMI), a data type (e.g. 

INTEGER), and valid values for discrete data elements (e.g. =>0 or -9999 (representing a 

missing value)). Although this information may be sufficient within a single project, each data 

element should have a conceptual and operational definition to support reuse. 

 

A conceptual definition is what you might find in a dictionary or a thesaurus; it explains what 

the concept means, describing the general characteristics and key aspects that distinguish it 

from other related things. The source of these definitions usually comes in the form of reference 

data that is defined by a source external to the study such as a community-established ontology 

or terminology. 

  

Operational definitions explain how a concept is measured during the conduct of a research 

project. These definitions help assure that measurements are taken consistently such that data 

will be comparable. Additionally, operational definitions document how the data were 

obtained. As such, operational definitions promote reproducibility. 

 

Together, conceptual and operational definitions relate the features of interest with the study 

data results. 
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Figure 4.5: Data element conceptual model 

 

In section 4.4.1 we defined a data element as the atomic unit of information exchange and use. 

It is a construct used to assign meaning to acquired or observed data. The data element carries 

the definitional information about the data value and is a combination of metadata and 

reference data to unambiguously describe observed or acquired data. As described above, the 

ISO 11179 model is a semantic model that formalizes and standardizes metadata necessary to 

describe data elements such that they can be documented managed and shared (Figure 4.6). 

This section covers the concepts of metadata pertaining to data elements necessary to 

completely specify a data element. The ISO 11179 is a framework for the specification and 

standardization of data elements describes data elements in a four-part framework. The four 

parts are: a conceptual domain (CD), a data element concept (DEC), a data element (DE), and 

a value domain (VD) (Figure 4.5).  

 

For example, if the data element was the 'patient sex', the value domain would include values 

for all sex values (Male, Female, Unknown). Thus, the value domain contains the valid values 

for the data element; however, there can be more than one way of representing these values. 
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Some studies might use (m,f,u) or (0,1,2). ISO 11179 standard handles this situation of multiple 

possible answer representations through having a data element (DE) and a data element concept 

(DEC). A DEC in this example can be the 'sex', which there are multiple representations of 

permissible values (value domains) that can specify the sex type. The pairing up of the DEC 

and one of these value domains creates a data element. 

 

Figure 4.6: Data element- level metadata for research 

4.4.2 Layer two: Observation Data Model 

The challenges in approaching a diverse observational dataset, a user needs both to simply assess the 

breadth of content (i.e. set of metadata values) available and systematically navigate to the detailed 

observational data values. This challenge is intensified when attempting to integrate clinical and 

molecular observations across 'omics technologies. There is no common standard for describing 

molecular observational data from omics assays such as microarray assay, sequencing, spectrometry 

etc. The ISA-TAB standard describes experimental metadata as well as the samples and the assays that 

were used to generate the data.  However, omics instruments often use proprietary data formats and 

structures. The most common structure is a simple data matrix, where the columns represent the features 

being observed, the rows represent the samples assayed and the cells representing the observed values. 

Data cubes are usually defined when multiple observation values and multiple dimensions are measured 

per observation.  

 

Managing data at this level requires the identification of a set of semantically labelled data 

elements and the associations between them to act as anchor points to which data at this level 

can be integrated and harmonized across heterogenous biomedical datasets. This is a crucial 
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step in enabling researchers to identify potential (hidden) relationships, patterns, associations, 

and correlations that exist in these large heterogeneous datasets. For example, a researcher 

might want to test the correlation between the severity of an adverse event with the increase of 

a lab test urine measurement and with the treatment of a vaccine. Another common use case is 

to compare data from one clinical program with another program in the same therapeutic class. 

This use case requires data harmonization across programs to support data comparisons. How 

can we define an observation-level data model that can enable researchers to navigate this huge 

data spectrum with a consistent and systematic approach?  

 

The main purpose is to provide a standard for structuring observed data and related contextual 

data into a semantically defined common data model. The key idea in this model is the 

underlying presumption that an 'Observation' cannot be modelled as a simple fact-attribute 

concept, but rather it consists of discrete pieces of information as designed by the researcher to 

collect the desired information about the phenomenon of interest. To get an idea about how 

this might be achieved, the underlying concept of the data element will be extended as 

discussed in section 4.4.1. A data element defines data in terms of observability: the phenomena 

of interest, the observational information to be observed/measured, and the resulting data value 

of the observations/measurement. Observations and measurements in clinical or molecular data 

can be conceptualized as a group of multiple data elements put together in a semantically 

defined vector providing the desired contextual information necessary for the interpretation of 

a phenomenon of interest. Observational data is the equivalent of transactional data associating 

a number of master entities including an observation feature, a subject or a sample each with 

their own set of characteristics and collectively they form the semantics and context for 

recording a data value for such an observation. "Subject 101 had mild nausea starting on Study 

Day 6" is an observation that involves a subject (101), an observable event (nausea), an 

observed quality of this event (mild), and a point in time qualifier (day 6). Each of the above 

constructs of an observation is a data element associating a phenomenon of interest (nausea), 

with an observable quality (subject, severity, timepoint) and the observed value (101, mild, day 

6). Using a transcriptomic assay example, "The measured log intensity of expression of gene 

wnt11 in sample A is 7.5" is an observation that involves an observable feature (wnt11), an 

observed quality (transcription expression log intensity), a sample (A) with the observed value 

(7.5). 

Observation Conceptual Model 

Despite the vast complexity and diversity of possible biomedical observations, all such 

information can, in principle, be described via a straightforward set of five underlying concepts. 

These are specified by the observation model that describes the principle data elements and 

their relationships that make up an observation. The observational data model captures the core 

information needed for describing scientific observations and provides a common language 

that can be used to harmonize representation and supporting software implementations. It also 

supports integration, interoperability, query and analysis. The model defines and interrelates 

the conceptual subcomponents that are intrinsic to any and all kinds of “observation”. Figure 

4.7 illustrates the different constructs of an observation using a set of semantically labelled data 
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elements. This model deconstructs an instance of an observation into the following construct 

data elements: 

 

● Object-of-observation: the feature being observed, whether in a clinical or molecular 

setup; e.g., weight, albumin, headache, TP53, CD40 - described by a topic descriptor 

● Subject-of-observation: the entity upon which the observation is being observed 

● Observed property: qualitative or quantitative property of the observed feature being 

observed or measured; e.g. count, result of test, severity of headache, amount of dosage 

● Temporal properties: timing attributes that are not longitudinal such as time of 

collection, duration, start of event, interval …etc. 

● Time-series properties: properties that cause the repetition of the same observation over 

time, resulting in a longitudinal observation; e.g. visit, planned study day, time point.  

 

In addition to the above attributes of the observation, supplementary data is often collected to 

provide more context and granularity to the observation with attributes about the observed-

feature, or about the subject-of-observation. These attributes are linked via the master entities 

described in the TR model discussed in the following section. 

 

 
Figure 4.7: Observation conceptual model 

 

These concepts are applicable to high dimensional molecular observations as well. These 

assays generate a substantial set of observable features such as transcripts, gene sequences, 

gene names, proteins and metabolites. Observations at the molecular level also follow the same 

semantics implied by the observation model. The object-of-observation in this case is the 

feature being observed. For a microarray experiment, the object of observation is the transcript; 

for flow cytometry, it is the cell; for a proteomics assay, it is the polypeptide or protein. In each 

of these assays a set of quantities are being measured. For example, the raw or log ratio of the 

intensity, count or concentration of a metabolite or a cell type. These assays measure these 

observations for a set of samples that could then be described by a set of attributes giving more 

granularity to the observation as well as adding a time dimension if the assay design involved 

sampling at different timepoints.  
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4.4.3 Layer three: Dataset meta-model 

The dataset meta-model defines the requirements and the properties of the primary data asset. 

As previously explained in section 4.3, primary data assets provide a standardized way to group 

and organizes observations as defined by the observation model (section 4.4.2) into structurally 

and semantically annotated datasets. The primary dataset facilitates data curation, data 

integration and data reuse. A primary dataset follows the principles of a tidy dataset. Although 

not a standard, these principles provide a framework for thinking about the organization of data 

within a dataset. Developed by Hadley Wickham, this framework encompasses data, tools and 

workflows. In this section, the three characteristics of a tidy dataset will be briefly described, 

then based on these principles the framework's dataset model will be defined. 

Tidy data 

There are many ways to structure data in a dataset. Most research datasets are rectangular tables 

made up of rows and columns. Table 4.1 gives an example of a dataset about vital sign 

measurements conducted during a clinical trial over two visits. The dataset contains four rows 

and eight columns illustrating a common structure usually referred to as the horizontal (or 

wide) format. Table 4.2 shows the same data as Table 4.1 but using the vertical (or long) format. 

The inconsistency of those two dataset representations shows that the structural metadata of a 

dataset is not enough to describe the underlying semantics or meaning of the values displayed 

in the table.  

 

Table 4.1: Tabulated data in wide format 

 
 

 

 

 

 

 

 

 

 

 

Table 4.2: Tabulated data in long format 
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Semantically, a dataset is a collection of values, either quantitative or qualitative. Every value 

belongs to a variable and an observation. A variable contains all values that measure the same 

underlying attribute (like height, temperature, duration) across subjects. An observation 

contains all values measured on the same subject-matter (like a subject, or a study or a sample) 

across attributes. 

 

Contextually, a dataset is a collection of related observations. In any given research study there 

are usually multiple domains of observations. For example, in a clinical trial of a new vaccine 

we might have three observational domains: demographic data collected from each person (age, 

sex, race), medical data collected from each subject on each day (adverse events, laboratory 

tests), and molecular profiling data about each subject's genetic activity (gene expression, 

protein profiling, etc.).  

 

For a given dataset, it is usually easy to figure out what are observations and what are variables, 

but it is quite difficult to precisely define variables and observations in general. Different 

experimental designs will most certainly lead to different usages of variables vs observations. 

However, a common framework can be employed to guide the process of deciding which 

attributes are observations and which are variables when it comes to designing a dataset. The 

concept of a tidy dataset is to provide a standardized way to link the structure of a dataset (the 

layout) with its semantics (the meaning of its content) to make the job of storing and accessing 

the data easier. Three fundamental principles make a tidy dataset: 

 

● Each variable forms a column 

● Each observation forms a row 

● Each type of observational unit (domain) forms a table 

 

Table 4.3 is a tidy version of Table 4.2. Each row represents a single observation, the result of 

one lab test of one subject, and each column is a variable. Tidy data principles try to guard 

against the most common problems that lead to messy and difficult to manipulate datasets. 

These problems are: 

 

1. Column headers are values, not variable names 
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2. Multiple variables are stored in one column 

3. Variables are stored in both rows and columns 

4. Multiple types of observational units are stored in the same table 

5. A single observational unit is stored in multiple tables. 

 

Dealing with these problems makes most of the data curation tasks that will be discussed 

subsequently. 

 

Table 4.3: Tabulated data in tidy format 

 

Why tidy? 

In TREMF, primary data assets serve three data management functions: data curation, data 

integration, and data reuse; hence, their design should be optimized to serve these functions. 

Tidy dataset principles were chosen as the basis for defining this class of data assets as their 

design makes it easier for a curator or a computer program to target or extract variables that 

describe the same underlying attribute for all observations in a dataset. For example, integrating 

data from two datasets structured like Table 4.3 would require less work for a database loader—

using simpler annotations—to identify the columns containing 'visit name' or 'test 

measurement' for each observation than if both datasets followed Table 4.1 or Table 4.2 

designs. The latter would require reading values with the same semantic meaning from multiple 

columns. Furthermore, in case of a data curation task, a common data transformation or 

validation task would make sure that all values of an attribute (e.g. vital sign test names) use a 

common terminology. Defining rules on tidy dataset columns would greatly facilitate 

validating the contents of a dataset or transforming values of an attribute from one dictionary 
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to another. Metadata constraints must be employed when transforming data values into and out 

of the standardized format to prevent inappropriate type conversions. 

 

An 'observation' is defined as a vector of related variables or qualifiers. Each variable/qualifier 

describes a specific aspect of a measured or collected observation. Principles of the tidy dataset 

are well suited for this vector model of an observation because its layout ensures that values of 

different variables from the same observation are always paired and exist on the same row. 

Each observation vector corresponds to a row in a dataset while each column corresponds to 

one type of the six qualifiers making up the observation. Table 4.4 shows an example of dataset 

for observations. One row describes the full observation (Subject 101 has a Severe Headache 

on Day 6 of the study). Each column carries one value for each of the observation attributes: 

subject-of-observation (subject 101), feature-of-observation (headache), the feature observed 

property (severity) and the time-of-observation (day 6).  

 

 

 

 

 

Table 4.4: An example of a tidy dataset for observation data 

 

Standards compliance 

In the context of data sharing and secondary use, standards-based data transfer becomes key 

for wider adoption and outreach to the community. The third main function that a primary data 

asset serves is to support data transfer. This applies to both the data ingestion phase (importing 

data into the data management environment) and the data sharing phase (transfer of data from 

the initial data management environment to other data management environments). To achieve 

seamless data sharing, the data management framework must use established community 

standards and natively support datasets that are structured and formatted to confirm with these 

standards. Moreover, the data management framework may need to conform to multiple 

standards to support a wide variety of data types and broadly interoperate with a diversity of 

collaborating systems. The main object of the framework presented in this chapter is to 

incorporate a generalized model that is compliant with at least two of the most relevant standard 
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data exchange formats serving the translational research domain: CDISC-SDTM for tabulation 

of clinical data and the ISA-TAB standard for sample and assay metadata tabulation. Although 

both standards do not comprehensively cover all translational data elements, they represent the 

most commonly generated data elements in translational research studies. It is important to 

reiterate that layer two of the framework is concerned with the structural metadata that is used 

to organize observational data into consistently annotated datasets. Standards pertinent to this 

layer only apply to data organization. 

 

 
Figure 4.8: Dataset conceptual meta-model 

 

Based on the requirements described above, the framework's second layer is a meta-model 

based on a common set of basic concepts adopted from the principles of tidy data and 

implemented in community data standards such as the CDISC SDTM and the ISA-TAB.  

Figure 4.8 describes the conceptual model of TREMF layer 2. A demographics dataset, a 

medical history dataset, and a transcriptomic assay dataset are examples of a primary data asset. 

These data assets are represented by a dataset model. Each dataset model conforms to a meta-

model described by a dataset descriptor. A metamodel defines the meta-data necessary to 

describe the structure, semantics and constraints of a dataset model. A dataset descriptor is 

exemplified by community standards which provide standard dataset templates. These 
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templates can be readily used to define standard dataset models. In the following section, we 

will define the dataset meta-model. 

 

In the simple semantics of a Tidy dataset columns should represent measured variables in the 

dataset while rows should represent instances of observations being measured against the set 

of attributes denoted by these variables. To define a tidy dataset for observations, we need to 

extend these simple rules to be able to describe the semantics of the variables (columns) and 

their relationship to each other in describing the observation vector as described by the 

observation data model. These extensions also need to be compliant with the supported data 

standards. Each dataset is described by a ‘dataset descriptor’, which defines its domain, the 

structure of the dataset, the syntax and semantics of its fields, any enforced controlled 

vocabularies, and validation rules. 

 

The meta-model defines two meta-classes: the dataset, which is composed of a set of fields. 

Each row in a dataset is an instance of the subject matter which is being described by a series 

of named fields. Each field, which normally corresponds to a column in a dataset, has a role to 

describe a certain aspect of the row entity in this dataset. A role describes the syntax and 

semantics of information conveyed by the field. A dataset is assumed to hold data about one 

subject matter (e.g. subject, study, sample or assay feature) and it is set to belong to a ‘domain’ 

that describes the context for the data reported in that dataset (e.g. laboratory test results, 

demographics, microarray sample metadata, or flow cytometry processed data).  

4.4.4 Layer four: Domain model 

As defined earlier, master data describe domain entities that provide context for the observed 

data in the form of common concepts that relate to all translational research studies. The fourth 

layer of the metadata framework comprises the TR domain model, which describes the core 

elements of a translational research study and their interrelationships. The domain model 

provides the contextual study information within which the observational data was collected. 

 

The master data of any translational research arguably comprise a minimal set of common 

entities that will exist in this domain regardless of the focus of research. This domain model 

is the contextual metadata that relates data (layers one, two and three) to the master entities 

common to the translational research domain.  

 

The Entity-Attribute-Value approach to data modelling is applied to most data integration 

solutions, mainly to minimize the cost of maintenance should data attributes change or be added 

over time. This reasoning is valid to some extent—building a flexible schema for easily 

integrating new data elements is justified reasoning; however, active data integration is only 

part of the data lifecycle. Data processing, storage, archiving, sharing, and repurposing are all 

phases that require managing contextual information consistently and maintaining explicitly 

defining relationships between entities of interest. Even cross-study data integration requires a 

minimal set of contextual metadata about the study design, the study activities conducted and 
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the relationships between the subjects and their corresponding biological samples from which 

molecular data is generated. Relational models, of the type championed in this chapter, enable 

utilization of various abstraction levels that are important in integrating clinical and molecular 

data. This model is optimized for persisting master data objects. The TR domain model 

maintains a consistent representation of TR studies. This consistent representation enables 

cross-study data integration by establishing the generalized study context and relating the 

observed data to this context (Figure 4.9). 

 

Translational research studies generally produce two main categories of data types: 

 

1. Low dimensional clinical and subject data 

2. High dimensional molecular characterizations generated by 'omics technologies 

 

The first category profiles subjects (patients, animal models, cell culture, etc.), while the second 

profiles the molecular activity within samples extracted from patients. Together, data from both 

categories are organized and defined with respect to a study, which provides the context for 

generating and analyzing such data. The foremost requirement is to establish the relationship 

between the data associated with the clinical subject and the corresponding molecular data 

associated with the subject’s samples. Compliance with established TR data standards is, as 

stated prior, of critical importance. 

 

A hybrid model based on both the CDISC Study Design Model (SDM) and the ISA data model 

is presented to provide standards for clinical assessments, biomarker/omics assays and 

reporting. Data generated from an activity is represented as a ‘dataset’ in the hybrid model, 

which is defined by the second layer of the TREMF. Adhering to the TR domain model 

maintains a consistent representation of TR studies and enables cross-study data integration by 

establishing the study context and relating the observed data to it. 
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Figure 4.9: TR Domain model 

4.5 Building a translational research data management platform 

Figure 4.10 illustrates the application of the TREMF approach to manage the different stages 

of the data pipeline from data ingestion, transformation, exploration, integration, analysis and 

publication/reporting. The platform maintains the lineage across the various datasets as these 

are created and transformed throughout the data flow. In the following sections, we present in 

details the platform’s modules and features as illustrated in Figure 4.11. The system 

architecture and implementation are provided as supplemental artifacts. 

 
 

Figure 4.10: EHS application of the translational research metadata framework to manage the data pipeline from 

the state of files to annotated and integrated analysis-ready datasets. 



Chapter 4: Data Management 

97 
 

 

 
Figure 4.11: EHS modules 

 

4.5.1 Metadata Definition 

As illustrated by Figure 4.1, a project’s data life cycle starts by identifying and describing the 

project and the data to be collected (i.e. defining the metadata). Metadata is usually assigned 

by Electronic Data Capture (EDC) tools, such as OpenClinica22 or RedCap23, as new data is 

collected. However, metadata is crucial for managing data throughout the data life-cycle, 

therefore, it is essential to incorporate metadata into the data custodianship environment. Data 

may transform in structure throughout the data flow to become readily useful by data 

consumers; however, the metadata, or certainly the meaning implied by the metadata, will 

remain consistent during transformation. The metadata definition module (Figure 4.11a) offers 

data managers a set of features via a simple and intuitive dashboard to define and manage 

metadata. This includes defining the research project metadata for TREMF layer 1 (Figure 

4.2a) and experimental metadata data for TREMF layer 2. 

4.5.1.1 Defining project metadata 

Setting up a project from the data manager dashboard is the entry point into the system. A 

project can be a single study, a multi-study (planned related studies), or a meta-study (unrelated 

studies). The ‘studies panel’ enables managers to enter information about each study within a 

project such as study design, eligibility criteria, objectives and other study metadata elements 
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via a web form compliant with the CDISC Protocol Representation Model (PRM) and CDISC 

Study Design Model (SDM). The ‘activity panel’ allows the data manager to create and manage 

the project’s planned clinical activities, molecular assays and their associated dataset 

descriptors, while the ‘Members and Users’ panel is used to manage user roles and their data 

access rights. 

4.5.1.2 Defining dataset metadata 

A dataset is a pointer to one or more data files. Each dataset is associated with a dataset 

descriptor comprising its metadata describing the data structure and meanings of each column. 

Based on the dataset meta-model, standard compliant dataset descriptor templates were created 

to cover all CDISC SDTM domains (findings, events and interventions) and preloaded them 

into the database. Each template contains the domain level metadata, field level metadata and 

any associated value-level controlled terminologies. Similarly, for assays, we preloaded 

standard templates for sample and feature metadata based on the ISA model. The assay data 

are tailored to the specific assay technologies (e.g. microarray gene expression, flow cytometry, 

proteomic and immuno assays). The ‘manage activity’ page allows a data manager to create 

and edit dataset descriptors for each planned activity based on the preloaded standard 

templates. Features include excluding/including fields, setting mandatory fields, specifying 

controlled vocabularies for a field’s permissible values, as well as adding new fields. 

4.5.2 Data Storage 

Data storage often takes different forms for different purposes throughout the data life cycle. 

In the early stages, data are stored in an operational database, such as those embedded in EDC 

tools and Biobanks. These databases are specifically designed for operational data collection 

and management to support clinical conduct. Once operational data collection is complete, data 

from these various sources are processed and ingested into a data repository, which is a type of 

database that compiles data into a well-defined consistent data model. Data repositories provide 

an efficient structure for data storage offering researchers a consistent ‘single source of truth’ 

for their project’s primary datasets. Unfortunately, the process of creating or using a data 

repository is omitted in most translational research projects. More often, only simplified data 

structures, often called data marts, that are optimized for a limited set of project-specific queries 

and analyses are used for the project data. These data marts typically perform well for the 

limited purposes for which they were designed. However, data marts are often difficult to 

interrogate for purposes not considered when the project was scoped. Given the richness 

inherent in TR data, data marts inhibit opportunities for data reuse.  

 

Moving data between these different storage systems requires Extract, Transform and Load 

(ETL) processes. These processes often can create a bottleneck in the data pipeline depending 

on the source and target systems, the design of the ETL processes and the extent of required 

data transformation/integration and delay data use and analysis. TREMF was designed to 

support two models for data: a dataset-based model suitable for storing primary data, and an 

observation-based model suitable for storing integrated data. Based on these two models we 
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implemented a two-schema storage solution that takes away the inefficiencies of moving data 

between different database implementations, thus removing the need for a separate ETL 

process. These two storage solutions are: the Translational Medicine Data Archive (TMDA) 

storing primary annotated datasets, and the Translational Medicine Data Warehouse (TMDW) 

storing integrated subject and sample observations for querying and exploring (Figure 4.4d). 

4.5.3 File management and data loading 

The TDMA module provides users with credentials to upload and manage the project’s data 

files.  Creation of new data files, or changes to existing files, are represented in an audit trail 

that records the file loading status, the user account associated with the file operation and the 

timestamp of the operation. The project’s staging directory organizes the project files and 

serves as the entry point for loading data into the platform’s databases. To load a file, the user 

launches the loading wizard which takes them through a series of steps to associate the file 

with one of the previously defined dataset descriptors. The descriptor is used by the loading 

process as a reference for parsing and validating the file contents accordingly. Once validated, 

the loading process persists the file as an annotated dataset in the archive database. The 

integration and harmonization process next extracts the dataset’s content and loads the content 

into the observation data warehouse as illustrated by Figure 4.11b. The loading wizard natively 

supports CDISC SDTM formatted files. 

4.5.4 Integrating and harmonizing data? 

Integration and harmonization are the processes during which data is transformed from the 

structured dataset form to the granular observation-based form. These processes take place as 

part of the data loading wizard (Figure 4.11d). Data for each subject are integrated across 

different domains (demographics, diagnosis, laboratory tests, medications, etc.); across studies 

(clinical trials); and when molecular data is measured, across multiple omics platforms linking 

omics data to the phenotype data. The resulting integrated data is loaded into the data 

warehouse. The backbone of the integration and harmonization process is the dataset meta-

model of the TREMF implemented in each dataset’s metadata descriptor. Different datasets 

will have different column names and different compositions, but the ‘meaning’ of these 

columns, defined by the meta-model, makes it possible to identify focal columns that are used 

as ‘integration keys’ to link data from different datasets. Semantic harmonization of clinical 

data is achieved by processing the controlled values for the integration keys to create a unique 

set of harmonized ‘observed features’. The basis of the harmonized data is the creation of an 

‘observation descriptor’ describing the data values available for each observed feature 

according to the observation model defined in layer 3 of TREMF. These descriptors become 

the searchable elements for the data warehouse observation query. 

4.5.5 Data Access 

The software architecture of EHS is based on a loosely coupled backend service application 

and a frontend client application communicating programmatically (this is done technically 

using a RESTful (web-based) Application Programming Interface (API). The API-based 
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design is expected to encourage the development of new applications as well as third-party 

integrations with other platforms. Incorporating EHS data into any external app requires a 

HTTP library and a JSON parser. HTTPS is supported for secure client access. EHS API is 

organized into three distinct API collections: the ‘Data Archive API’ provides read-only 

accessibility to the TMDA database allowing third party applications to find and access meta-

data rich translational medicine research datasets, the ‘Observation query API’ exposes 

endpoints to query TMDW, selecting, filtering and combining data from all available domains 

of data (this API supports building integration pipelines for analytical tools), and the ‘Apps 

API’ is a client dependent API serving the frontend client applications (Figure 4.11e). 

4.5.6 Retrieving and exploring data 

4.5.6.1 Project archive module 

Often researchers need to find and retrieve entire third-party datasets to process and include in 

their analyses or to publish their own data for reuse. Based on the ‘Data Archive API’, this 

module offers a straightforward graphical user interface to search and browse the catalogue of 

projects stored in the data repository, enabling the retrieval of structurally and semantically 

annotated primary datasets for sharing and reuse. For each stored project, a project summary 

page provides metadata about the project and links to the associated datasets available to 

download. 

4.5.6.2 Data explorer & query module 

The data explorer is a visual browser and query interface supporting observation-level 

exploration and retrieval of data stored in the TMDW. Based on the ‘Observation query API’, 

the data explorer uses on-demand synchronized charts to provide a hypothesis-free, interactive, 

and easy-to-use graphical interface to explore integrated subject and sample related 

observations. This is particularly useful during the initial phases of research when no clear 

hypotheses are immediately available. The user interfaces design is based on an intuitive 

domain-aware visual layout organizing data across three panels. 

 

• The first panel hosts subject and study data elements, such as subject demographics, 

study arms, visits, etc… 

• The second panel is for exploring the harmonized clinical observation features 

organized by the CDISC general observation class-domain hierarchy 

• The third panel is for molecular observations organized by assay type 

 

The three panels offer a faceted browsing component for the related data elements and an 

interactive dashboard showing a chart for each selected data element or observation feature. 

 

Besides offering a visual environment for browsing and localizing interesting features in the 

data, the ‘data explorer’ acts as a visual query builder to support hypothesis generation through 

interactive data selection and filtering directly off the charts. All charts across the three panels 

are synchronized. Adding a chart for an observation or a data element essentially adds it to the 
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query. Applying filtering on any chart automatically cascades the effect of the filter to all other 

visualized charts effectively affecting the number of subjects and samples currently satisfied 

by the query. For example, filtering for an explicit range of ‘diastolic blood pressure’ 

measurements followed by applying a filter on ‘study arm’ and ‘visit’ will automatically be 

propagated to the related omics assays, reducing them to only the matching filtered subjects 

and vice versa. In addition to the plotted charts, a count panel displayed on top is dynamically 

updated to show the number of subjects, samples and assays satisfying the selected and filtered 

data. 

4.5.7 Data extraction 

The data custodianship environment streamlines the process by which researchers extract and 

retrieve data for their analyses that are up-to-date and properly annotated. EHS aims to manage 

the data extraction process by allowing users to export data by creating ‘analysis datasets’. An 

analysis dataset is formatted to facilitate the application of data analysis tools the dataset (i.e. 

analysis-ready). An analysis dataset stores the query that the user specifies to extract the 

required data rather than the actual resulting data. This allows export files to be automatically 

generated every time there are changes to the primary data source including the contents of any 

derived fields. The analysis dataset also holds general metadata information about its contents, 

as well as field-level metadata describing the columns in each of its data files. Sharing 

permissions enable users to share or publish their datasets widely to promote open data 

philosophies and experimental reproducibility. 

 

A ‘data cart’ feature in the data explorer module allows the user to save their queries to retrieve 

later or to ‘checkout’ whereby the query results are exported into analysis datasets. At 

checkout, the server prepares the data exports according to the data query giving the user the 

option to add their own descriptions and tags before they are ready to download or save to their 

analysis datasets library. Analysis datasets are stored in a separate data collection that is user-

focused and not project based. They are accessible via the API using their unique URL to 

download associated export files. The analysis datasets library page provides a user workspace 

to manage their own created datasets, shared datasets from other users and datasets made public 

by other users. 

4.6 Case-studies 

The work presented here was developed at Imperial College London Data Science Institute 

(ICL-DSI) as part of collaborations with Innovative Medicine Initiative (IMI) funded projects. 

Requirements for EHS were gathered through supporting and addressing real world problems 

experienced by IMI TR consortia including U-BIOPRED, OncoTrack, PreDiCT-T and 

BIOVACSAFE. The first production implementation of the TREMF platform was developed 

for BioVacSafe (Biomarkers for Enhanced Vaccine Safety), an IMI funded project that 

investigates vaccine reactogenicity to enhance immunosafety of novel vaccines. 
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4.6.1 The ERS proof-of-concept 

To demonstrate the applicability of the developed framework and the usability of our platform 

in supporting cross-study research and re-use of data, we conducted a pilot study with the 

European Respiratory Society (ERS) to compare various subpopulations of asthma and COPD 

patients from two independent studies: ‘U-BIOPRED’ (Unbiased BIOmarkers in PREDiction 

of respiratory disease outcomes) and ‘EvA’ (Emphysema versus Airway disease) respectively. 

Using the metadata module, a meta-study project was created for the pilot, defining two studies 

with different subject cohorts, four clinical activities: laboratory tests, vital signs, spirometry 

and reversibility tests, and a gene expression assay. For each activity, a dataset descriptor was 

pre-defined based on one of the preloaded CDISC SDTM standard templates to guarantee that 

overlapping clinical variables are uniquely represented across the two studies. Data files 

selected for the pilot were then uploaded to the dedicated project drive space and each loaded 

into the data repository and data-warehouse simultaneously via the loading wizard. Once 

loaded, data from a total of 1,294 subjects and 39 unique and harmonized clinical variables 

were readily integrated in the observation data-warehouse. Using only the data explorer 

(applying no computer programming techniques), lead investigators interrogated the integrated 

data, used these data to generate hypotheses using visually coordinated plots of the clinical 

features of interest, determined instantly whether sufficient samples were available to conduct 

follow on analyses and, finally, saved and extracted the desired analysis ready datasets. One of 

these hypotheses was to test whether asthma and COPD sufferers with abnormally high 

eosinophil cell counts and airflow obstruction share similar gene expression profiles. This 

proof-of-concept demonstrated the feasibility of reusing data for secondary research gathered 

from two independent consortia by utilizing our platform and its underlying metadata 

framework. 

4.6.2 BioVacSafe Data Management System 

Following the ERS proof-of-concept, we continued developing EHS as part of delivering a 

production implementation for the BioVacSafe project. BioVacSafe is a multi-study and multi-

site project that generated clinical, pre-clinical and ‘omics data for assessment of vaccine 

responses with an emphasis on immunosafety and immunogenicity24. Data were collected and 

stored from two independent sites, running five clinical trials investigating seven cohorts with 

overlapping clinical and molecular observations. Clinical data included subject demographics, 

laboratory tests (hematology, urinalysis, chemistry), vital signs and MedDRA-coded adverse 

events (solicited and non-solicited). Data from molecular assays included: microarray gene 

expression profiling, cytokine/chemokine profiling, whole blood leukocytes, flight mass 

spectrometry (CyTOF) and Immunophenotyping of Monocytes using Fluorescence activated 

cell sorting (FACS). The platform and its underlying metadata framework provided an 

intuitive, systematic and standard compliant approach to streamline the process of data 

integration and harmonization across the consortia’s work streams. Once loaded, the explorer 

module also offered researchers a systematic hypothesis-free method to navigate through the 
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entire range of data, and to export different research-focused analysis datasets. For instance, a 

common exploratory use case was to select subjects based on some combined clinical 

observations specifying a potential reactogenicity profile and export their corresponding assay 

data to run differential analysis to look for correlated molecular signatures. 

 

4.6.3 Summary 

This chapter introduced the art of data management. The nature of data was explored in the 

context of the complicated transformations that raw data must undergo to prepare data for 

meticulous interrogation leading to sophisticated scientific analysis and interpretation. 

Rigorous application of community data standards was explained as a foundational necessity 

to unlock the power and value of study data for subsequent integration and reuse to address 

research questions not considered by the study investigators for which such data was originally 

collected. An open system, EHS, that implements comprehensive data flow and lifecycle 

processes was presented as a tangible prototypical implementation having precedence in 

driving precision medicine data analysis conducted by large scale public private partnerships. 

 

Readers will certainly have gained an appreciation of the substantial data processing 

infrastructure required to support TR programs, infrastructure that is often, in the best systems, 

hidden from scientific data consumers. However, readers having clinical and scientific 

responsibilities for TR projects should also now realize their critical responsibility in applying 

their scientific expertise to aid in the design of the data models and structures that will support 

their research efforts. This aid is not only crucial for expediting the achievement of initial 

research goals but may be the key to realizing high value unexpected research opportunities 

through reuse of high-quality data residing in readily approachable information systems. 
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Chapter 5: Getting Knowledge from Data 

Xian Yang and Yike Guo 

5.1 Obtaining knowledge from biomedical data 

5.1.1 How to detect and remove confounders 

Translational medicine research commonly adopts high-throughput technologies to generate 

quantitative measurements of patients, such as microarrays, bead chips, mass spectrometers 

and gene sequencing. This section discusses methods of detecting and removing batch effects 

(also some unwanted variations) in high throughput experiments. Batch effects are technical 

sources of variations commonly occurring during sample preparation. In precision medicine 

research, large cohorts are typically enrolled in the study leading to a corresponding large 

number of samples. Handling many samples at once is technically impractical and hence the 

data must be split into manageable rounds of processing. Batch effects cannot be avoided in 

the raw data generation steps. Samples processed under the same conditions (e.g., consistent 

laboratories, reagent lots and personnel) will likely be inadvertently biased leading to variation 

across sample sets processed under different conditions. If technical variations confound with 

biology, then it becomes difficult to detect real differential features from the dataset. Some 

 examples can be found in1  2, in which the biological factors and technical variables are 

extremely correlated that results in concerns on the validity of biological findings3. Figure 5.14 

provides a sample batch effect, where ten example genes are susceptible. The data used in this 

figure is from a bladder cancer study5. Hence, before carrying out any statistical or machine 

learning methods for biomarker detection or predictive model construction, it is necessary to 

check whether batch effects have been avoided by careful experimental design. 

  
Figure 5.1: Ten example genes from different samples having different expression levels in two different batches. 
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A traditional way to detect batch effect is applying exploratory approaches, in which principal 

component analysis (PCA)6 7 is one of the most popular methods. As an unsupervised machine 

learning technique, PCA8 performs an orthogonal transformation to convert observations of 

correlated variables into linearly uncorrelated ones. Principal components are linear 

combinations of original features (e.g., genes, proteins, lipids). The transformation is presented 

as clusters of data points. The data points can be shown in a scatterplot where the coordinates 

are principal components. PCA is commonly used as an exploratory tool to provide an intuitive 

understanding of the dataset9 10 11. Should groups or separations of data points be clearly 

discriminated in the scatterplot, then the data within these groups can be divided into 

corresponding datasets.  The data points within a group identified by PCA can then be 

investigated to assess whether these share similar characteristics. The effect of confounders can 

further be quantified by examining principal components of the data. As principal components 

capture variations of the dataset, the method incorporates both biological and technical 

variability. By checking the correlation between principal components and known 

confounders, such as data handling time and site, we can quantify the degree of batch effects.  

 

The volume of data generated in a precision medicine study grows immensely during the 

conduct of the study. Therefore, PCA assessment of large datasets has become a time-

consuming task. Abraham and Inouye 2014 12  developed a highly efficient PCA 

implementation based on randomized algorithms. With significant reduced time and cost, 

identical accuracy in extracting the top ranked principal components is achieved. This approach 

is one example of adapting existing traditional methods to support big data in precision 

medicine research. Another extension of PCA is the guided PCA method13 which calculates a 

test statistic to determine whether batch effects were introduced. The proportion of total 

variance owing to batch effects is calculated as well as its probability value. Instead of 

subjective visualization, the guided PCA method provides a way to quantify batch effects14. 

 

Hierarchical clustering is another popular exploratory method for batch effect detection. 

Similar with PCA, it is also an unsupervised machine learning method to discovery patterns of 

samples. By using hierarchical clustering, samples are organized into a hierarchy and can be 

visualized in a dendrogram15. Neighboring samples in the hierarchy are close by some measure 

of distance. For instance, patients with similar Omics profiles will be closely clustered together. 

Some common similarity functions for distance calculation are Euclidean, city block (or 

 
 
 
 
 
 
 
 
 
 

 

https://paperpile.com/c/G8ErIr/xn7E
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Manhattan), correlation and Hamming distance. Particularly, Euclidean distance emphasizes 

on large differences as the distance is squared, while the city block distance removes the square.  

The correlation coefficient is commonly used to measure the similarity of two time-series 

variables. For ordinary variables, such as {low, medium, high}, before calculating the distance 

we need to convert them into real valued numbers (such as 1/3, 2/3 and 1). For categorical 

variables, hamming distance can be applied. In short, the choice of distance function fully 

depends on the data types and the requirements of similarity detection. 

 

Once batch effects have been detected, it is crucial to remove them. Along with simple removal 

methods, such as mean centering and ratio-based methods, there exist some comprehensive 

methods for high-throughput data in precision medicine research. PCA is not only a powerful 

tool for batch effect detection, it can be also used to remove batch effects. Proposed in Alter et 

al 200016, PCA together with singular value decomposition (SVD) has successfully remove 

batch effects in yeast cell cycle experiments and cancer study17. As it identifies the directions 

of greatest variation, this method only works well when the systematic bias effect generates 

the largest variation. When the variation of experimental design is of similar magnitudes with 

the batch effects, this approach would not work. Therefore, other methods, such as the distance 

weighted discrimination (DWD) method 18 , are developed. DWD is intrinsically a variant of 

support vector machine (SVM), aims at finding a separating hyperplane between two batches 

and projecting them onto the plane. With the estimated mean of each batch, the whole dataset 

is corrected by removing the DWD plane multiplied by the mean.   

 

Linear models can be used for Batch effect removal as well. If some specific surrogates of 

batch factors are known, such as processing time and site, then we can directly incorporate 

these surrogates in linear models for group comparison (e.g, ComBat19 20). If the sources of 

batch effects are not known, then surrogate variable analysis (SVA)21 can be applied. Through 

investigating data patterns, SVA determines sources of batch effects and incorporates them into 

linear model for batch effect removal.  

5.1.2 Handling missing values 

In precision medicine research, missing values are frequently encountered, such as defective 

cells in a gene expression microarray, unmatched genome positions in a functional genomics 

assay, unreliable measurements due the detection limit of the instruments or removed 

participants in a clinical trial. As downstream data analysis methods usually require complete 

data matrices, handling missing values significantly influences the results of statistical analysis. 

For example, SVD, PCA and SVM cannot work well in the presence of missing values22. 

Therefore, it is necessary to explore methods of coping with missing values. Missing data 
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values can generally fall into two categories: values are missing at random and values, when 

absent, provide information about the task at hand (such as saturated detectors)23. The detection 

of a missing value of the second type is usually incorporated directly into the downstream 

analysis model. The most common way to deal with missing data values in the first category is 

doing data imputation24. Zero insertion is the simplest way that all missing data values are 

replaced by zero. Considering the bias introduced by zero insertion, more sophisticated 

strategies are established to estimate possible missing values from the data. The remainder of 

this section will introduce methods to handle missing values for typical data types, where 

methods for microarray data have been extensively studied. Other large-scale datasets such as 

mass spectrometry and phenomic data will also be investigated. 

5.1.2.1      Imputation methods for microarray datasets 

There are massive missing value imputation methods for microarray gene expression data, 

which can fall into different categories according to different criteria. For example, four main 

types of imputation methods are summarized in Acuña and Rodriguez 200425, which are case 

deletion, mean imputation, median imputation and K nearest neighbor imputation (kNNI). Case 

deletion removes all samples with missing values, while mean imputation replaced missing 

values by calculating the mean based on its known features. Median imputation chooses the 

median rather than mean, which is supposed to be more robust to outliers. KNNI uses K nearest 

genes to impute the missing values. 

 

In Aittokallio 201026, imputation methods are divided into two different categories: generic 

statistical methods and application-specific methods. Generic statistical methods include the 

traditional ones summarized in Little 198727. 

 

1. Hot deck imputation methods do the imputation using non-missing cases in the 

neighborhood, among which KNNI is the most popular one. 

2. Model-based imputation predicts missing values by using statistical models via the 

expectation-maximisation (EM) algorithm28. 

3. Multiple imputation methods provide more than one value for each missing point, 

making the downstream methods work on each complete dataset individually and, 

combined, generate the final results which also reflect sampling variability. 

4. Cold deck imputation imputes missing values by making use of external information, 

such as data from related studies. 

 

Table 5.1 from Aittokallio 201029 shows some basic concepts of typical generic methods. As a 

departure from generic statistical methods, application specific methods take quality issues and 
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experimental designs into consideration. The first attempt uses the gene functionality 

information from the Gene Ontology (GO)30. GO-based semantic similarity combined with 

expression similarity is used for relevant gene selection during imputation. Moreover, there are 

some other sources used for expression level prediction, such as promoter sequence binding 

information on transcription factors31, and histone acetylation state information on chromatin 

structure32. 

 

Table 5.1: Representative missing value imputation methods (from Aittokallio 2010
33

) 

Imputation method Prediction variables Estimation 

method* 

K nearest neighbours Matrix rows (genes) WA 

Least squares regression Matrix rows or columns (arrays) LS 

Local least squares Matrix rows or columns LS 

Singular value decomposition Singular vector (‘eigengens’) EM 

Bayesian principal component 

analysis 

Principle components EM 

Gaussian mixture clustering Gaussian components EM 

Support vector regression Support vectors QP 

* WA, weighted average; LS, least-squares optimization; EM, expectation-maximisation algorithm; QP, quadratic 

programming. 

 

The review in Moorthy, Mohamad, and Deris 201434 further categories the imputation methods 

according to the type of information, which are grouped into four main streams: 

 

1. Global approach algorithms impute missing data based on global correlation 

information obtained from the entire data matrix. SVD imputation 35  36 , Bayesian 

principal component analysis (BPCA)37 and support vector regression are typical global 

methods. Many of these methods are parameter free. For example, BPCA imputation 

determines the number of prediction variables automatically. 

 

2. Local approach algorithms perform missing data estimation by only using local similar 

structures in the dataset. The first methods dedicated to microarray data is KNNI, where 

a distance-weighted average over K genes is used as an estimate for the missing values 
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38 . There are some modifications of KNNI, which mainly focus on replacing the 

weighted average in the estimation step with regression models and improving the 

nearest neighboring genes selection process by using Bayesian variable selection or 

Spearman’s correlation measure39 40 41. Least square (LS) imputation takes advantage 

of both gene and array correlations for fast missing data imputation, where an adaptive 

procedure for combining estimates is proposed42. Local least square (LLS) imputation 

is the local version of LS, which is more popular than LS as it can automatically decide 

the neighborhood size from the data43. LLS has an iterative version, called ILLS. ILLS 

imputes missing values sequentially starting from the genes having missing rates, the 

newly imputed genes are then reused in subsequent rounds of imputation44. Gaussian 

mixture clustering (GMC) imputation is also a local imputation method but it is capable 

of using more global correlation information45. GMC imputation uses the EM algorithm 

to cluster data into different groups whose values are averaged to obtain the estimates 

of missing values. Collateral missing value is another imputation method, making use 

of multiple parallel imputations, which gives better performance than BPCA, KNN and 

LS on ovarian cancer and yeast sporulation time series data46.  Ameliorative missing 

value imputation further improves estimation by applying Monte Carlo simulation 

techniques47.  When the rate of missing values is high or binary matrices, adaptive 

bicluster-based approach developed in Colantonio et al. 201048 is a good choice of 

imputation. 

 

3. Hybrid approaches exploit both local and global correlation information for data 

imputation. LinCmb 49  is a typical hybrid approach that combines missing values 

estimated by KNN, SVD, BPCA and GMC imputation methods. LinCmb allows the 

imputation to be adaptive to the datasets such that global methods have a stronger 

weight in determining missing values when more missing entries are present.    

 

4. Knowledge based approaches incorporate background knowledge into data imputation. 

Approaches in this category correspond to application specific methods defined in 

Aittokallio 201050, where GO-based imputation and histone acetylation information 

aided imputation are two popular ones. 

5.1.2.2      Imputation methods for other big datasets 
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Imputation methods for microarray datasets can be, in principle, adapted to other big datasets. 

In particular, the label-free liquid chromatography mass spectrometry (LC-MS) based 

proteomics approach generates big datasets, providing quantitative profiling of complex 

peptide mixtures51. However, a substantial fraction of data at the peptide level is missing from 

proteomic datasets, making downstream analyses difficult52  53  54 .  Similarities are shared 

between proteomics and microarray-based gene expression analysis. They both return large 

matrices, where proteomics gives a matrix of quantitative values of peptides and microarray 

generates probe-level transcripts55. However, the missing rate of proteomic datasets is much 

higher than the microarray-based gene expression datasets. About 20-50% of peptides values 

can be missing while less than 5% of transcript abundances are not observed. Moreover, the 

missing values usually result from the combination of random and non-random processes, 

making the imputation more challenging56. The work in Webb-Robertson et al. 201557 has 

evaluated 10 typical imputation methods (e.g., KNN, LLS, BPCA imputation) examining them 

for their individual merits and caveats with respect to LC-MS proteomics data. It has been 

found that no such method can always perform better than the others. Thus, it is preferable to 

consider application-specific methods that account for the mechanisms responsible for the 

missing data58. Other relevant data sources for missing value imputation, such as the clinical 

annotation of samples 59 , message RNA level, cellular role and information about 

experimentally undetected proteins can also help the imputation of LC-MS proteomics data60. 

 

In precision medicine research, another important large-scale data type, phenomic data, also 

inevitably contains missing values caused during data collection process. Phenomic data 

mainly contains the information of demographic measures (e.g., gender, race), environmental 

exposures, living habit (e.g., smoking, exercise), general health status (e.g., body mass index, 

blood pressure and forced vital capacity), medical images (e.g., fMRI scan), drug history and 

family disease history61. Integrative analysis of phenomic data and other Omics data has been 

found to improve the understanding of diseases62 63 64 65 66. Approaches for reducing missing 

data include increasing structured data documentation, reducing data input errors, and utilizing 

natural language processing67. Here, we only focus on analytical approaches to cope with 

missing data, primarily imputation methods. Different from datasets generated by high 
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throughput experiments (e.g., microarray and LC-MS) where continuous abundance values are 

measured, phenomic datasets contain various data types including continuous, nominal, binary 

and ordinal data types. As the data type is more complex, a lot of imputation methods for Omics 

data types cannot be well adapted to phenomic data. Moreover, many imputation methods for 

Omics data are established by exploring the correlation of variables. However, variables in 

phenomic datasets are not necessarily correlated that some missing data points cannot be 

imputed from other observed variables. 

 

Multivariate imputation by chained equations (MICE) is one example method for addressing 

missing values in phenomic datasets 68 . MICE deals with multivariate missing data by 

factorizing the joint conditional probability as a sequence of conditional probabilities. Next, 

MICE performs multiple regressions sequentially based on different types of missing 

covariates. It is a nonparametric approach using Gibbs sampling to estimate parameters. 

Besides MICE, there is a random forest-based imputation method to impute phenomic data, 

which is called MissForest69 .  MissForest sets variables with missing values as response 

variables. Other variables are used to predict the response variables through the resampling-

based classification and regression trees. It is an iterative method and the final results are 

obtained when the imputed values converge. In Liao et al. 201470, modifications on KNN 

dedicated to phenomic data with mixed types of variables have been proposed. As KNN is a 

correlation-based method, we should carefully choose methods of calculating correlation 

according to different types of variables. Table 5.2 has listed candidates of correlation measures 

for different data types used in the correlation construction of KNN. The regression methods 

used for imputing missing data points of different types are shown in Table 5.3 from Liao et 

al. 201471. 

 

Table 5.2: Correlation measures for different data types 

Variables Continuous Ordinary Binary Categorical 

Continuous Spearman -- -- -- 

Ordinary Polyserial 72 Polycoric73,74 -- -- 
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Binary Point Biserial75 Rank 

Biserial76 

Phi77,78 -- 

Categorical Point Biserial 

extension 

Rank Biserial 

extension 

Cramer’s V79 Cramer’s V 

 

Table 5.3: Methods for gathering imputation information of different data types from K nearest neighbours 

Variables Continuous Ordinary Binary Categorical 

Regression 

methods 

Linear 

regression 

Ordinal logistic 

regression 

Logistic 

regression 

Multinomial 

logistic 

regression 

5.1.3 Basic statistical inference methods 

The process of performing statistical hypothesis testing in the translational medicine research 

is illustrated in Figure 5.2. The null hypothesis and its alternative are defined first. Then a test 

statistic and its p-value are calculated if the null hypothesis is assumed to be true. Next, the 

null hypothesis is rejected by check whether the p-value is smaller than the pre-defined 

significance level 80. 

When multiple comparisons to test null hypotheses are performed, there is a potential increase 

in statistical error. For example, if 10,000 independent tests are performed, and the null 

hypotheses are true, we expect about 500 tests to have a p-value of less than 0.05. This would 

lead to falsely invalidating the null hypothesis in those 500 tests, referred to as type I error or 

false positives. In high throughput analysis, such as microarray, we may do more than hundreds 

of thousands of tests. Thus, it is necessary to correct p-values for multiple testing. Bonferroni 

correction81 is a popular way to compensate the increase of Type I error82. Although the family-

wise error rate (FWER) can be controlled by the Bonferroni method or its extensions, such as 

the Šidák procedure83, the Tukey's test84, the Hochberg's step-up procedure85 and the Dunnett's 

test86,  the power of detecting real differences is largely reduced. Therefore, it is necessary to 

develop better techniques for multiple testing, such that the Type I error can be maintained 

without inflating the rate of Type II error (i.e. false negatives). For large scale multiple testing 
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in precision medicine research, we can instead control the false discovery rate (FDR) following 

the Benjamini–Hochberg procedure87. 

 
Figure 5.2: The process of carrying out statistical hypothesis testing. 

 

 

Various statistical testing methods are available for comparing the distributions, such as 

student’s t-test 88 , Welch test 89 , Mann-Whitney U test or Wilcoxon rank-sum test 90 , 

Kolmogorov-Smirnov test91 , Chi-squared test92,  F-test (analysis of variance, ANOVA)93 and 

permutation test94. Usage of common statistical tests under different conditions is shown in 

Figure 5.3 (from https://onlinecourses.science.psu.edu/stat500/node/68). 
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Figure 5.3: Pipelines of carrying out statistical tests in precision medicine research 

5.1.4 Feature selection and construction of classifications models 

To extract information from quantitative datasets, we can use machine learning methods for 

predictive model construction95 96 97 98. The datasets generated in translation medicine research 

usually have much larger number of features than the sample. Thus, machine learning methods 
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would suffer from the curse of dimensionality problem. To solve this issue, feature selection 

methods for reducing the feature dimensionality is of super importance. 

5.1.4.1 How to choose classification methods? 

There are various classification algorithms, such as linear classifiers (e.g., Fisher’s linear 

discriminant99, Logistic regression100, Naïve Bayes classifier101, Support Vector Machine102, 

decision trees103, Neural networks104, Relevance vector machine105  and deep learning106). 

Selecting classification methods for specific input datasets will likely lead to lively debates. 

Exhaustively trying different methods to see which one fit the data best can be supported by 

the model selection methods (such as Akaike information criterion107, Bayesian information 

criterion108 109, Bayes factor110 111), and  the cross-validation (CV)112 performance evaluation 

process. Common CV methods include leave-one-out cross-validation (LOOCV) and k-fold 

cross-validation that splits the whole dataset into training and validation sub-datasets (as shown 

in Figure 5.4). 

  

 

 
Figure 5.4: The process of cross validation for classification 

 

Figure 5.5 shows common performance evaluation metrics (from “Sensitivity and Specificity 

- Wikipedia” n.d.), which are accuracy, sensitivity, specificity, false positive rate and false 
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negative rate.  Sensitivity is calculated as the probability of detecting true positives, while 

specificity shows the ratio of finding negative ones correctly. To examine the sensitivity and 

specificity at the same time, the receiver operating characteristic (ROC) curve can be 

introduced, in which sensitivity is plotted against (1-specificity) by varying threshold 

settings113. 

 
Figure 5.5: Summary of statistical measurements of performance 

5.1.4.2 Selecting features in the classification model 

As we have mentioned, the number of features is usually much larger than the number of 

samples in most translational medicine research. Like in the U-BIOPRED project, each 

sample/patient is characterized by high-dimensional features (which can be up to millions). 

This curse of dimensionality problem would result in the model over-fitting. To alleviate this 

issue, feature selection methods can be used. Popular feature selection methods can fall into 

three categories: filtering, embedding and wrapping. Filtering is the most straightforward way 

to select features before predictive model construction. Examples methods are statistical tests 

using p-values for discriminant feature selection. Limitations of filtering methods lie in the 

difficulties in jointly detecting predictive power of multiple features. An alternative approach 

is embedding, like Lasso114 and Bayesian learning115 construct linear predictive model while 

selecting features by introducing sparse constraints. The process of this embedded feature 

selection approach is shown in Figure 5.6. s the performance is evaluated via CV that in each 

iteration different training dataset is used for feature selection, the process in Figure 5.6 cannot 

generate a single prediction model for future sample prediction. Therefore, it is necessary to 

explore feature selection methods as discussed in 116  117  118  119 . The third category is the 
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wrapping method, which combined use feature selection and machine learning methods to find 

the best combined approach returning the best performance.  

  
Figure 5.6: The process of cross validation with the embedded feature selection approach 

 

 

5.1.5 Detecting hidden patterns behind the data 

One ultimate goal of precision medicine is finding patient-tailored treatments/ drugs. We 

believe that many diseases (e.g, neuropsychiatric, cardiovascular, asthma, cancer and 

autoimmune disorders) are not single disease that patients should be treated differently based 

on their own characteristics120. Therefore, it is necessary to identify subtypes of patients for 

best phenotyping complex diseases. Here, we would like to discuss clustering and topological 

methods for hidden pattern discovery. 

5.1.5.1 Clustering methods 

Clustering methods, a typical unsupervised machine learning, are commonly used to find 

subgroups of samples, which are generally fall into two categories: feature-based clustering 

and similarity-based clustering 121  122 . In translational medicine research, for example, a 

metabolomics dataset for patients can be represented by a matrix, where rows can be 

measurements of metabolite and columns represent patients. Subgroups of patients can be 
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detected by clustering by similar columns. If we want to find detect similar groups of 

metabolites and samples at the same time, we can apply biclustering methods 123, such as Cheng 

and Church’s algorithm124, coupled Two-way clustering125, the iterative signature algorithm126 

and the SAMBA algorithm (Statistical-Algorithmic Method for Bicluster Analysis)127 . In 

Tanay, Sharan, and Shamir 2005128, the abovementioned methods are well discussed and their 

example applications in medical research can be found in 129 130 131.  

5.1.5.2 Topological data analysis 

Apart from unsupervised machine learning methods, we can also consider using topological 

data analysis (TDA)132 to detect the hidden patterns of large biomedical datasets133. Figure 5.7 

shows example results of using TDA to identify subgroups of severe asthma patients134.  TDA 

constructs networks to show the hidden patterns of datasets explicitly, where patients of similar 

features are grouped into one node. The link between two nodes indicating they share common 

patients. This approach is different from clustering, allowing overlapped sub-groups of 

patients. It is a powerful visualization tool to help people quickly understand data. TDA is a 

geometric approach to shape recognition within data135 136. Various machine learning and 

statistical analysis methods can be applied afterwards to further deep phenotype patient 

subgroups. 
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Figure 5.7: Example results generated by TDA

137
. Multidimensional clusters in asthmatic patients and healthy 

controls.  
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5.2 Solving practical data analysis issues 

5.2.1 Dealing with imbalanced training datasets 

In biomedical research, sample number inconsistencies across test classes are quite common. 

For example, it is difficult to enroll large numbers of patients into a rare disease clinical study. 

Even in the study of common diseases, such as asthma, the number of biopsy samples collected 

from healthy controls are usually much smaller than the number of samples collected from 

patients as healthy people are not likely to often be willing to undergo invasive procedures. 

Most machine learning methods suffer from imbalanced training datasets, making the 

prediction biased and inaccurate138. If the evaluation metric is not carefully chosen, the machine 

learning methods may only be optimized to achieve an overall prediction accuracy but not be 

optimized for class-specific predictions.  

5.2.1.1 Evaluation metrics 

Accuracy is an inappropriate metric for evaluating the performance of machine learning 

methods on imbalanced datasets due to the prediction accuracy being dominated by the 

majority class. Thus, we need an alternative evaluation of performance. Table 5.4 discusses the 

most common evaluation metrics. Please note that TP, FP, TN and FN represent true positive, 

false positive, true negative and false negative, respectively. Compared with accuracy, which 

is (TP+TN)/(TP+FP+TN+FN), the metrics in Table 5.4 try to give equal emphasis to 

imbalanced datasets. 

 

Table 5.4: Evaluation metrics for imbalanced datasets 

Evaluation metric Calculations 

Balanced accuracy It computes the average of the percentages 

of correctly classified positives and 

correctly classified negatives: TP/2(TP+FN) 

+ TN/2(TN+FP). 

ROC Curve It summarises the performance over a range 

of TPRs and FPRs. TPR = TP/(TP+FN); 

FPR = FP/(FP+TN). 

Precision and Recall Curve It summarises the performance over a range 

of precision and recall. Precision = 

TP/(TP+FP); recall = TPR. 

F1 score It measures the trade-off between precision 

and recall by computing 

1/(1/Precision+1/Recall). 

5.2.1.2 Resampling methods 

The imbalanced data problem can be handled by resampling methods.  The training dataset can 

be preprocessed to get balanced sample distributions. We can perform oversampling on the 
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minority class or downsampling on the majority class139. Table 5.5 listed out some typical 

resampling methods and their features. 

 

Table 5.5: Different resampling methods and their characteristics  

Resampling method Concept 

Random undersampling The majority class samples are discarded at random to 

reach a more balanced sample distribution. 

Random oversampling  The minority class samples are copied and repeated in 

the dataset until a more balanced sample distribution 

is reached. 

Cluster-based oversampling K-means clustering is performed on the minority class. 

Then oversampling is performed on each of the 

clusters to have the same number of samples, and the 

overall dataset to be balanced 140. 

Synthetic minority oversampling The training dataset is augmented by generating 

synthetic minority samples based on kNN 141.  

5.2.1.3 Ensembling methods 

Another way to handle the imbalanced dataset predictive model construction problem is using 

ensembling methods to construct several prediction models and aggregate their prediction 

results. There are many ensembling methods, such as bagging 142 , AdaBoos 143 , Random 

Forest144 and gradient boosting. Table 5.6 briefly explains their concepts and characteristics.  

 

Table 5.6: Ensembling methods and their characteristics  

Ensembling 

method 

Concept 

Bagging It starts with generating N bootstrapped training sample sets with 

replacement. Then N predictors are constructed using each bootstrapped 

dataset separately. Their prediction results are aggregated at the end. 

Random 

Forest 

It is similar with Bagging methods.  The only difference is that each base 

learner is constructed on random selection of features. 

Adaboost It fits a sequence of week learners on repeated modified versions of the data. 

The predictions are aggregated through a weighted majority vote. 

Gradient 

boosting 

It is similar with Adaboost in constructing a strong learning from a set of 

weak learners.  The way of creating weak learners is different. Instead of 

training on a new sample distribution, weak learners are trained on residual 

errors. 
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5.2.2 Dealing with small training datasets 

The lack of training data often results in overfitting when we train a model. The performance 

of data analysis methods is consequently reduced. We can use ensemble methods as discussed 

above to build a strong predictor from weak learners. Along with this kind of methods, we can 

use transfer learning methods as discussed below. 

 

Reusing knowledge from other auxiliary domains where the data is annotated is one idea for 

overcoming the problem of a small training dataset. This framework is called transfer 

learning145. Here, we would like to give an example of transfer learning in precision medicine 

research, where the advance machine learning technique, deep learning, is used for disease 

classification. The convolutional neural network (CNN), a typical architecture of deep learning, 

can provide great advances in extracting information from medical imaging data. However, it 

suffers from small training datasets. The work in Huynh, Li, and Giger 2016146 uses transfer 

learning to classify mammographic tumors from medical images via CNNs originally 

pretrained for non-medical tasks. It is based on the assumption that structures within a CNN 

trained on everyday objects could be used to create a classifier for breast cancer computer aided 

diagnosis. AlexNet147, a CNN model with three fully connected layers and five convolutional 

layers, is used to extract features from images. As it is unclear which layer of AlexNet would 

best fit the classification of breast tumor images, the output of each layer is fed into the 

classifier to find the optimal layer. The overview of the classification methodology in Huynh, 

Li, and Giger 2016148 is shown in Figure 5.8. The feature extraction step is implemented 

through two different approaches: method A uses features from a pretrained CNN while 

method B extracts features via segmented-tumor-based analytical methods149 150 151. SVM is 

used to construct classifiers from features sets generated by different methods. An ensemble 

classifier is also used to average individual classifiers (method C)152. The classification results 

show that classifiers based on method A perform comparably to the one using method B and 

method C outperforms the others, showing that transfer learning can improve computer-aided 

diagnosis methods without the requirement of large training datasets.  
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Figure 5.8 The overview of feature extraction and classification methods for mammographic tumour 

classification
153

.  

5.2.3 Dealing with partially labelled datasets 

Having sufficient labelled data can be an issue in supervised learning and possibly unlabeled 

data can help with the prediction. There are many of hybrid techniques capable of learning both 

from labelled and unlabeled data. In Bogdan Gabrys and Petrakieva 2004154, these hybrid 

methods are categorized into three groups: pre-labelling, post-labelling and semi-supervised 

approaches. Each category is summarized in Table 5.7.  

 

Table 5.7: The main categories of training methods for partially labelled datasets 

Approach category Concept Example methods 

Pre-labelling  An initial classifier is 

constructed using labelled 

data first. Then, it is used to 

label the unlabeled data. 

After this has been done, a 

new classifier is 

constructing using both the 

original and newly labelled 

data. 

Dara, Kremer, and Stacey, 

n.d. 155 , Mitchell 2004 156 , 

Nigam and Ghani 2000 157 , 

Nigam et al. 1998158 

Post-labelling  A data model is constructed 

using all available data with 

the application of a data 

density estimation procedure 

or clustering algorithm. 

Then, labelled data is then 

 Ghahramani and Jordan 

1994 159 , Kothari and Jain, 

n.d.160 
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used to label whole clusters 

of data by counting the 

number of labelled samples 

from specific classes within 

each of the clusters. 

Semi-supervised  Both labelled and unlabeled 

data are process at the same 

time. This method sit 

somewhere between pre-

labelling and post-labelled 

approaches: the clustering 

process is constrained by the 

labelled data and the 

classification process takes 

into account of unlabeled 

data.  

B. Gabrys and Bargiela 

2000 161 , Pedrycz et al. 

2008 162 , Bogdan Gabrys 

2002163 

 

5.2.4 Dealing with the out of memory problem caused by big data 

The datasets collected in biomedical research are very large with respect to sample size and 

feature dimension. Traditional ways of using machine learning methods on large datasets 

require correspondingly large amounts of memory and may result in the “out of memory” 

problem. There are many ways to overcome this problem; for example, we can use parallel 

computing platform such as SPARK to process big data. Figure 5.9 from L’Heureux et al. 

2017164 shows the main manipulations for big data using parallel computing platforms. We can 

also consider reducing the feature space (e.g., PCA) or use online machine learning methods. 

The online machine learning methods can learn incrementally from mini batches of instances 

in which only a small amount of samples are loaded in the memory. There are many online 

learning methods implemented in popular machine learning toolkits. For example, the Python 

scikit-learn package supports the following four main categories of online learning algorithms:  

 

1. classification -- perceptron, SGD classifier and Naive Bayes classifier;  

2. regression -- SGD regressor and Passive aggressive regressor; 

3. clustering -- mini-batch k-means; 

4. feature extraction -- mini-batch dictionary learning and incremental PCA. 
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Figure 5.9: Manipulations for big data using parallel computing platforms. 

5.2.5 Constructing models from datasets having both continuous and categorical 

variables 

To choose the machine learning algorithm for predictive model construction, the first step is 

understanding the data type. The datasets might only contain numerical features, categorical 

features or both numerical and categorical features. For numerical data, there are many machine 

learning methods from which to choose, such as decision trees, naive bayes, SVM, logistic 

regression, ensemble methods (bagging, boosting), Random forest and multi-layer perceptron. 

For categorical data, the most common machine learning methods are naive bayes, decision 

trees and their ensembles such as Random forest, minimum distance classifiers or KNN with 

hamming distance. For the dataset with both numerical and categorical features, we could 

choose decision trees and its ensembles, and KNN based approach with the cost function 

carefully designed to handle data for both types together.  

5.2.6 Dealing with correlated features 

In biomedical research, the datasets could have highly correlated features, such as gene 

expression data. These correlated features could affect the performance of some data analysis 

algorithms. For example, linear regression models, such as linear regression and logistic 

regression, are based on the assumptions that features are independent. Multicollinearity could 

yield solutions numerically unstable and widely varying. For this reason, the severity of 
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multicollinearity is quantified by calculating the variance inflation factor (VIF). For decision 

tree-based methods, which are good at detecting interactions between different features, 

correlations among features would mask these interactions. Feature selection or reduction 

methods could be applied to reduce the correlation among features. One typical approach is 

PCA. Alternatively, correlation values between features could be calculated followed by 

removal of certain highly correlated features.  

5.3 Biomarker discovery 

5.3.1 What is biomarker? 

A biomarker (also sometimes referred to as a molecular marker or signature) is a molecule, 

gene or other physiologic characteristic that, when measured, can be used as an indicator of a 

given pathophysiological process, disease, or disease subclass165. As such, biomarkers are 

fundamental to biomedical research for identifying or classifying disease sufferers, monitoring 

disease states, assessing responses to treatment or as potential intervention targets. A biomarker 

may simply be a clinical signal such as blood pressure or triglyceride levels. However, 

increasingly biomarkers rely on sophisticated technological measures of molecular physiology 

such as patterns of gene expression or changes in neural electrical activity. Ideally, biomarker 

measurements should be objective, safe and easy to collect, respond rapidly and sensitively to 

biological changes and remain consistent across cohorts of subjects that share medically 

relevant physical traits. 

 

Biomarkers have been especially important with respect to cancer treatment. The genetic 

abnormalities that underlie the development of cancer can be detected objectively via certain 

DNA and RNA markers to aid in precise diagnosis. Further, biomarkers can lead to more 

sophisticated therapies that specifically target cancer cells while sparing healthy cells. 

 

The increasing recognition of physiologic heterogeneity of many diseases and the importance 

of personal factors and life history has heightened the importance of identifying and applying 

informative biomarkers in contemporary medical research and practice. 

5.3.2 Discovering biomarkers 

The pathway to biomarker discovery and validation “is a work in progress and is evolving”166, 

although guidelines have been suggested for some domains167 and form a useful framework.  

 

The discovery process for new biomarkers can be broadly divided into two contrasting 

approaches: data-driven (also “statistical”, “discovery-based”, “untargeted”, or “un-biased”) 

versus hypothesis-driven (“knowledge-based” or “targeted”).  The former assesses biomarker 

candidates without any a priori selection or prioritization and tests these candidates in parallel, 
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perhaps using statistical approaches to extract the best candidates. In comparison, the latter 

uses contextual and mechanistic knowledge to winnow the universe of possible targets to a 

subset of probable candidates. While the distinction is not perfect—discovery pipelines may 

use a mixture of both—the division is useful for categorizing methodologies and 

methodological issues. 

5.3.3 What are challenges of biomarker discovery? 

Despite the clear need for biomarkers, intense efforts/investment to identify new biomarkers 

and copious data generated by high throughput technologies the number of clinically validated 

biomarkers is rather modest168. 

 

The advent of high-throughput omics technologies, in which thousands of potential targets can 

be easily interrogated without a priori assumptions, accelerates hypotheses generation leading 

to biologic insights. However, extracting meaningful molecular signatures from such dense 

datasets poses computational challenges169 

 

The lack of gene set overlap between two FDA-approved transcriptome signatures for node 

negative breast cancer prognosis, and other similar examples, 170 raises concerns regarding the 

ability of purely statistical approaches to produce consistent findings. Many investigators are 

evaluating combinations of biomarkers in hopes of attaining suitable sensitivity and specificity 

for clinical application.  

 

Another potential source of problems lies in the study population used for biomarker discovery.  

Many populations are assembled through convenience without the intent of pursuing specific 

biomarker identification and, correspondingly, are selected without pertinent inclusion and 

exclusion criteria. Research using such populations may be susceptible to confounding factors 

resulting in false positives.  

5.4 System Biology approaches 

5.4.1 Typical data-level integrative analysis methods 

5.4.1.1 WGCNA 

Weighted correlation network analysis (WGCNA)171 is widely used in high dimensional data 

analysis to study relationships between co-expressed modules (e.g., correlated gene clusters) 

and with external sample traits. The basic idea of WGCNA is summarized in Figure 5.10. The 

first step in WGCNA is to construct a gene co-expression network based on the correlations. 

The next step is identifying modules from the correlation network. Modules are defined as 
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interconnected genes in the network, where the interconnectivity is measured by the topological 

overlap measure. WGCNA uses unsupervised clustering to identify modules. The next step is 

finding biological or clinically significant modules. Functional enrichment analysis can be used 

to detect pathway memberships. Statistical significance tests can be used to detect trait 

associated modules. To summarize the gene expression profiles of a given model, WGCNA 

uses the first principle component of the expression matrix of a module as the eigengene. An 

Eigengene network is then generated to study module relationships. If we find any interesting 

modules, we could carry out experiments to understand the drivers of these modules. 

 
Figure 5.10: The main steps of the WGCNA method (from Langfelder and Horvath 2008

172
). 

5.4.1.2 GSVA 

Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method which 

estimates the relative enrichment of a gene set of interest across a sample population173174
. 

Hence, it allows us to observe the variation in the activity of a set of genes, such as a pathway 

or a gene signature, that corresponds to a specific biological condition. It produces a value, an 

enrichment score (ES), per sample and gene set, which can be examined for associations with 

clinical features of interest. The input of GSVA can be a gene expression matrix in the form of 

microarray expression values or RNA-seq counts. The kernel estimation of the cumulative 

density function is then performed to estimate the expression level statistic, which is then 

ranked for each sample. For each gene set, the KS-like random statistic is calculated. The gene 

set enrichment score can be either calculated as the maximum deviation from zero or difference 

between two sums. The output of GSVA contains a pathway enriched score for each gene set 

and sample. 
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5.4.1.3 SNF 

There are many computational methods to integrate multiple datasets together. In Huang, 

Chaudhary, and Garmire 2017175, both unsupervised and supervised data integration methods 

are discussed. There are mainly five categories of unsupervised data integration methods 176, 

which are matrix factorization, Bayesian, network-based, multiple kernel learning and multi-

step analysis. Here, we would like to discuss one typical network-based approach, Similarity 

Network Fusion (SNF), that we used in the U-BIOPRED project for multiple Omics data 

integration. SNF fuses diverse types of genomics datasets in a cost-efficient manner, analyzing 

different layers of biology on the same patients, clustering patients based on this fused 

matrix177. The method uses networks of samples generated from different Omics data types as 

the basis for data integration. SNF returns a single similarity network that captures both shared 

and complementary information from different data sources. Figure 5.11 (from 178) shows 

illustrative steps of SNF. In this example, two types of datasets, mRNA expression and DNA 

methylation, for the same patient cohort are loaded into SNF (as in Figure 5.11a). Then, 

similarity matrices, as it is shown in Figure 5.11b, are constructed for each data types. Patient 

similarity networks are then built using similarity matrices with weighted edges representing 

pairwise sample similarities (see 5.11c). The network fusion step in 5.11d applies a nonlinear 

method based on message-passing theory to iteratively update the network and make these 

similar179. As a result, weak similarities are removed while strong similarities shared among 

networks are retained.  

 

 
 

 
 
 
 

https://paperpile.com/c/G8ErIr/uMZj
https://paperpile.com/c/G8ErIr/uMZj


Concepts in Information and Knowledge Management for Translational Research 

 

 
Figure 5.11: Illustrative steps of SNF 

5.4.1.4 Deep learning 

In recent decades, deep learning has attained great success in the areas of computer vision, 

remote sensing, natural language processing and bioinformatics. With the massive 

accumulation of Omics and healthcare data, deep learning has been increasingly used in 

precision medicine research, such as biomarker identification and drug discovery180. Deep 

learning algorithms are based on the use of compositional layers of neurons which can be 

successfully applied in disease subtyping. For example, Tan et al. 2015 181  utilized deep 

learning methods to categorize breast cancer patients using the information extracted from 

genome-wide assays. Lasko, Denny, and Levy 2013182 combined sparse autoencoders and 
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Gaussian processes to distinguish gout from leukemia using uric acid sequences. Liang et al. 

2015183 developed a multimodal deep belief network for ovarian cancer patients clustering 

using genomic data. Miotto et al. 2016184 presented a three-layer stack denoising autoencoder 

to derive a general-purpose patient representation from electronic health records. Feature 

construction via deep learning approaches has been shown to efficiently reduce the training 

data size for subsequently supervised analyses185. 

 

Deep learning has also been applied to integrate multiple datasets in biomedical research as 

well. In Liang M n.d186, a multimodal deep belief network (DBN) is used for data integration. 

The basic idea is shown in Figure 5.12 (from Liang M n.d.187). It first uses a restricted 

Bolzmann machine (RBM) to encode latent features defined by each input dataset. Then, 

hidden variables from different modularities are fused together using the contrastive divergence 

(CD) algorithm. Finally, the joint representation of features is used for predictive model 

construction.   

 

 
Figure 5.12: An example of a multimodal deep learning model for data integration (GE: gene expression, DM:  

DNA methylation, DR: drug response). 

5.5 Disease maps  

5.5.1 Brief overview 

A disease map is defined as a pathway-based computational representation of disease 

mechanisms. It is a conceptual model built as a reflection of the published papers and inputs 

from domain experts. A disease map contains “disease-related signaling, metabolic and gene 

regulatory processes with evidence of their relationships to pathophysiological causes”188.  
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The concept of disease maps was first introduced with comprehensive reconstructions of 

disease mechanisms for Parkinson’s disease, Alzheimer’s disease, influenza and cancer189 190 
191 192, further developed within the eTRIKS Disease Maps Lab193 and evolved into the Disease 

Maps Community194 195 196. 

 

The Disease Maps Community brings together multiple groups from many countries and is 

quickly growing into a larger international effort. The involved projects are focused on building 

maps for specific diseases and developing the necessary supporting infrastructure and tools. 

One theme is consolidating resource into a centralized repository. This topic was extensively 

discussed during the 3rd Disease Maps Community Meeting (DMCM2018 197 ), and a 

combination of the Biological Pathway Exchange format198 and the Neo4j Graph Database 

environment199 200 is suggested as a possible solution.  

 

Most of the current maps in the responsibility of the authors of this section are developed in 

CellDesigner (http://www.celldesigner.org) with the possibility of providing all of these maps 

in the Systems Biology Graphical Notation 201  (SBGN), Biological Pathway Exchange 

(BioPAX), the Systems Biology Markup Language (SBML)202 and image formats. 

 

The involvement of domain experts from several independent groups is an extremely important 

aspect of constructing high quality disease maps. Such a team is organized as a joint effort 

across several groups coordinated by the leader of the map development.  

5.5.2 Computational approaches for disease maps 

Computational modelling approaches for diseases are presented in the following chapter. In 

this section computational approaches suited specifically for disease maps are introduced 

addressing their advantages and pitfalls. Two major directions are described: 

 

1. network analysis for disease maps 

2. computational modelling, from static representation to dynamic exploration 

5.5.2.1 Network analysis for disease maps 
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Given the nature of mechanistic representations within disease maps, network-based 

approaches are directly suitable for disease map modelling. Networks can be used, for example, 

to identify key interactions within disease maps and to explore the impact of their individual 

or joint alterations on disease progression. Sensitivity of drugs can be also predicted by 

investigating the network topology and analyzing perturbations induced by a chosen 

combination of molecular drug targets within a given disease map. Networks can be also used 

for comparative analyses between various disease types or stages and identification of the 

common sets of molecular mechanisms and modules across different pathological contexts. 

For example, a recent network-based comparison performed between Parkinson’s and age-

related diseases is presented in the work by Glaab and coauthors203. 

5.5.2.2 Modelling: from static representation to dynamic exploration 

While a disease map offers a static representation of current domain-expert knowledge on 

specific stages of a disease or a subtype of a disease, computational modelling approaches 

assist in understanding dynamic features leading to disease initiation and progression. 

Computational models of disease maps can be used, for example, to make predictions on 

disease progression and on medication efficacy, to identify candidates for drug repurposing, to 

refine and validate existing hypotheses and to postulate new hypotheses towards identifying 

improved therapeutic solutions. While a computational model for a given disease map can be 

seen as a powerful means to gain further insight into the disease’s dynamic aspects, its 

development depends highly on the level of detail and on the quality of information integrated 

into an initial map. This process may be a complex requiring additional steps such as the 

creation of a repository with quantitative experimental data. Moreover, the development of the 

model should be driven by clinical questions and needs to facilitate its validation through 

clinical studies. 

 

Examples of computational approaches suitable for disease map modelling include: 

 

1. logic models, (such as deterministic and stochastic Boolean networks) and rule-based 

approaches for signaling and regulatory networks 

2. steady-state approaches (e.g. flux balance analysis) for metabolic networks 

3. quantitative kinetic models, if kinetic information is available. Given the recent 

technical developments, we foresee that the integration of disease maps into multi-scale 

modelling approaches, which span specifics from the molecular level through cellular 

scale to organ and organism levels and permit inclusion of experimental data at all 

system levels, exploration of inter-scale phenomena relationships and analysis of 

perturbations at system level, becomes achievable. 

 

Summary 

This chapter provided a comprehensive overview of the wide breadth of analytical concepts 

and methods pertinent to translational research. General strategies for imputing missing values, 
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addressing confounding variables and performing statistical inference led to explanations of 

specialized methods for addressing pattern recognition in large scale datasets, including those 

commonly used for clustering and classification. Topics pertinent to supervised learning 

methods, including training set balancing and feature selection, were introduced with an 

emphasis on reviewing contemporary biomedical deep learning applications. Finally, this 

chapter reviewed system biology approaches for gaining biomedical insights including 

molecular network representations and analysis as well as the creation of consolidated disease 

maps. This review included several methods that were developed by the chapter authors. It is 

hoped that readers will repeatedly refer to this comprehensive review of computational 

approaches to translational research for guidance regarding analytical approaches to 

exploratory clinical studies. 
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Chapter 6: tranSMART: A Data Warehouse for 

Biomedical Data Analysis 

Florian Guitton and Yike Guo 

6.1 tranSMART background 

Much enthusiasm and energy are being directed toward open-source software approaches, pre-

competitive data sharing, and external innovation in the biopharmaceutical industry. 

TranSMART was developed by the Centocore division of Johnson and Johnson (J&J) and was 

released open source in 2012 to promote the system’s use as a standard translational 

information solution across academia and industry. J&J’s intent was to enable shared support 

for the platform’s continued technical development. Additionally, costly data curation and 

mapping efforts could be minimized across community research partners if all partners used 

the same information system, greatly enabling data exchange. 

 

The architecture and features of tranSMART will be detailed in this chapter. J&J extended 

I2B2 (Informatics Integrating Benchtop to Bedside), an open license clinical data management 

platform developed by investigators at the Harvard Medical School, to support the management 

and analysis of microarray gene expression platforms thereby creating tranSMART. At the 

time of this writing, the latest tranSMART version release is v17.1 available from the 

I2B2/tranSMART Foundation. This version was funded by certain eTRIKS partners and is also 

released as eTRIKS version 5.0 with the eTRIKS version having a newly developed graphical 

user interface called “Borderline”. The tranSMART version detailed in this chapter is v16.2 

which, at the time of this writing, is the most recent stable release. 

 

TranSMART is comprised of a web 2.0 application for data analysis and visualization which 

uses the open license statistical application R for mathematical computing, an extract transform 

load (ETL) application for ingesting data into the platform and a relational database for 

persisting data loaded to the platform. Although the initial version of tranSMART was 

dependent on the commercial Oracle relational database management system (RDBMS) users 

now have a choice between using Oracle or the open source PostgreSQL RDBMS. 

 

Developers representing a variety of organizations have made tranSMART interoperable with 

value added analytical solutions including the Galaxy data analysis platform, Dalliance genome 

browser, Cytoscape network analysis platform, GeneData Profiler, Ingenuity Pathway 

Analyzer, XNAT image management platform and many others. 
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6.2 Background 

tranSMART consolidates clinical and corresponding high dimensional molecular omics data 

(gene expression profiles, genotypes, serum protein panels, metabolomics, proteomics data, 

etc.) across one or more studies within a single data warehouse. The tranSMART ETL process 

can load a wide variety of clinical datasets, regardless of the source of these data, provided that 

a curator can map the individual data elements into the tranSMART database. In practice, a 

great many studies have been mapped and loaded into tranSMART instances hosted by a 

sizeable community of organizations. Moreover, a set of successful service providers have 

emerged to support data curation and hosting for tranSMART users. Analysis ready data sets 

in tabular formats (i.e. primary data sets as described in chapter 4) that are pre-processed 

against community or organizational data standards having values that have been prepared for 

use by analysis methods are very well suited for tranSMART. Specialty data modalities, such 

as medical images, have been supported by custom integrations with fit for purpose 

applications. For example, an organization has enabled co-retrieval of medical images with 

clinical attributes by maintaining references between subject and visit data stored in 

tranSMART with corresponding medical images stored in XNAT. 

 

 
Figure 6.1: Diagram of the tranSMART 

  

tranSMART uses a three-tiered architecture, a presentation tier, business tier, and data tier. As 

such, presentation, business processing and data management are physically separated as 

shown in Figure 6.2 to ease maintainability with respect to upgrading, replacing or substituting 

with respect to any of the tiers. 
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6.2.1 Presentation tier 

The presentation tier is built from a suite of technologies including such as Java/Groovy server 

pages (GSP, JSP), Ajax JavaScript Framework, JSON and XML. The presentation layer is 

mainly written in GSP for rendering views using the Grails framework allowing dynamic and 

static content to be used in combination. Ajax JavaScript framework builds dynamic web pages 

on the client browser (preferably Firefox or Chrome). JSON and XML are used to pass data 

between the server and browser applications. 

6.2.2 Business tier 

The business tier is responsible for data processing including brokering interactions between 

the data and presentation tiers. The business tier implements the Spring Security framework. 

Most of the business tier software is written in Grails including the Model and Controller 

components of the model-view-controller (MVC) pattern that is central to tranSMART’s 

design. tranSMART supports both SOAP and RESTful web services. SOAP (Simple Object 

Access Protocol) is a protocol for exchanging structured information across networks that relies 

on XML (Extensible Markup Language) for its message format. tranSMART also provides a 

RESTful (Representational State Transfer) web service application programming interface 

(API) to ease interoperability. The business tier implements a “plug in” architecture that 

includes the R module for mathematical computing. The business tier implements the 

operational services such as search, analysis, export and several others that will be detailed 

later. 

6.2.3 Data tier 

This data tier is responsible for exposing information held in tranSMART’s database and file 

system. As noted above, there is a choice between the Oracle and PostgreSQL databases. 

GORM (Grails Object Relational Model) and hibernate are used for object relational mapping 

to encapsulate the database from the business tier query logic. 
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Figure 6.2: tranSMART three-tiered architecture 

  

6.3 tranSMART functionality 

Although this section does not review all tranSMART capabilities it will provide the reader 

with enough information to understand how tranSMART can support translation research study 

teams. 

6.3.1 Search Panel 

TranSMART allows users to search there is a search the system generally to discover research 

data and literature that match search terms that the user provides. Files that are returned from 

the search can be added to a cart for export. See Figure 6.3 Selected results from the search box 

can be used as a filter in the Active Filters box on the left panel. 
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Figure 6.3: Search Panel 

6.3.2 Analyze 

tranSMART provides a biological concept search to build one or more cohorts of subjects using 

tools within the Analyze window. The analyze tool consists of a study hierarchy which is 

configurable by ETL curators for individual studies and is created as part of the ETL mapping 

process. The study hierarchy, or Program Explorer, is to the left of the Browse Window. 

Attributes within the study hierarchy can be identified through a free text search box. Attributes 

identified in this manner are opened and displayed in the hierarchy tree utility. 

 

Alternatively, users can use the hierarchy tree utility to manually navigate study hierarchies to 

find attributes of interest. Attributes (associated with data values) are leaves of the study 

hierarchy. 

 

Users can select clinical attributes of interest by dragging and dropping these into one or more 

query boxes of the search interface (right side of the Browse window). Attributes dragged and 
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dropped within boxes are subject to boolean “or” logic while attributes across boxes are subject 

to boolean “and” logic. In this manner, one or two cohorts (list(s) of subjects) can be created 

based on the attributes selected and how these are arranged in the query boxes. See Figure 6.4. 

 

 

 
Figure 6.4: Cohort selection panel where multiple subset can be selected for comparison 

 

If the “Summary Statistics” tab is selected tranSMART generates age, sex and race summary 

statistics with respect to the cohorts and displays these on a new view (see Figure 6.5). 

Attributes that are dragged and dropped from the navigation tree onto this interface will also 

be summarized. If two cohort are represented tranSMART will perform a student’s t-test for 

inferring meaningful differences in attributes across the cohorts. If there is only a single cohort 

selected the data will be displayed in a summary manner.  
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Figure 6.5: Summary statistics displaying information about the currently selected cohort 

 

Data can be secured at the study level by administrators. Studies hierarchies will not open for 

user who are not authorized and, therefore, their data will not be selectable. The roles associated 

with studies can be set as follows. 

  

• View: The view role allows users to define the criteria for the study groups to be 

compared, generate summary statistics for the study groups and specify points of 

comparison for the study groups. 

• Export: The export role assigns users the view role and allows users to export data. 

• Own: Users with OWN access level are assigned the export roles and are noted subject 

matter expert for the study. 

 

Cohort queries can be saved (the query is saved to re-build the result set, the result set is not 

saved with the query) for recall or to share with other users using the workspace tab (see figure 

6.6). 
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Figure 6.6: Workspace environment where cohorts can be saved 

 

Once cohorts are selected, corresponding high dimensional datasets can be subset with the 

cohorts and applied in analysis methods. The Advanced Workflow tab offers several analysis 

tools that can be applied to selected cohorts including correlation analysis, forest plot, survival 

analysis, heatmap generation, principal component analysis (PCA), scatter plot with linear 

regression, box plot with analysis of variance, hierarchical clustering, IC50, K-Means 

Clustering, Line graph, Logistic regression, Fisher test, Waterfall plot (see Figure 6.7). 
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Figure 6.7: List of available workflows 

 

Each advanced workflow method has its own pertinent input form and output display (see 

Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11). The workflows generally extract data and 

launch an R script to generate the analysis and output files. While the analysis is running the 

window displays a progress bar. On completion the results display appears. Any images or 

output files should be available to view or download. 

 
Figure 6.8: Input parameter screen for ANOVA analysis 

 

 
Figure 6.9: Intermediary step of an advance workflow using SmartR 
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Figure 6.10: Final analysis with Heatmap workflow 
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Figure 6.11: Result of an ANOVA computation 

 

The Grid View tab is used to display cohort data in a tabular format (see Figure 6.12). Users 

can add attributes to the grid via dragging and dropping concepts from the navigation tree and 

sort the grid by any column in ascending or descending order. Users can remove columns from 

view. Clinical data presented in the grid view can be exported as a delimited file (.csv, .xls). 

 

 

 
Figure 6.12: Grid view exposing the data values 
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The Data export tab is used to export the data associated with the cohorts (see Figure 6.13) 

with options to export either clinical data and/or corresponding high dimensional data, data for 

all study parameters or a user-defined subset of parameters, to run the export on line or as a 

background function. These export options place the files into zip archives. There is an export 

jobs tab that shows the status of each launched export job. The zip archive is accessible from 

the export jobs tab if the job is run in the background. 

 

 
Figure 6.13: Contextual data export panel 

 

The upload data tab allows an end user to upload a set of files to tranSMART (see Figure 6.14). 

It should be noted that tranSMART administrators often disable this feature and only allow 

dedicated curators to load data into the system. 

 
Figure 6.14: Upload of GWAS result data is available in the Upload Tab 

Using the Gene Signature/List window, the user can view definitions of existing gene 

signatures and add new gene signature definitions as shown in Figure 6.15. The gene signatures 

can be used to find studies that maintain differential expression values for those genes in the 

signature. Gene signatures can be made private to the creator or shared with other users. Gene 

signatures can be cloned to facilitate the creation of new signatures and these can be edited to 

add or delete individual genes. Gene signatures can be exported to a .xls file. 
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Figure 6.15: List gene panel 

 

The admin panel (see Figure 6.16) allows administrators to view the system access log and to 

manage groups, users and roles. Administrators can restrict access to individual studies through 

this interface.  

 

 
Figure 6.16: Administration Panel 

 

The Utilities options (see Figure 6.17) includes user documentation, access to support contacts, 

version information and login/logout functions. 
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Figure 6.17: Utilities Menu allowing password change 

 

6.3.3 Curation process 

The tranSMART database stores clinical attributes separately from high dimensional molecular 

attributes. Clinical attributes are stored in a flexible data structure capable of accommodating 

large variations in study designs and collected data elements. However, curators need to map 

each field of a data file to a data element, or concept, in the database. This is done using a 

mapping file that, when complete, directs the ETL software in populating the database. Most 

curators create this mapping file manually. Mapping file development requires both a good 

understanding of the study and its data as well as the ability to anticipate the navigation and 

interrogation preferences of the users. Typically, the mapping file will be developed iteratively 

with user feedback during the development process. Ideally, the input data that is mapped for 

ETL will be well prepared, standardized datasets as discussed in chapter 4. It should be clear 

to the reader that he curation process requires diligence as well as both scientific and data 

management. This process becomes much more intensive if multiple studies will be 

interrogated in concert.  

 

High dimensional datasets are stored in separate data structures. The mapping is more straight 

forward provided that the datasets are of good quality but care must be taken to ensure that the 

corresponding clinical and high dimensional datasets are referenced properly. The gene 

expression data was normalized using a standard protocol should the raw files be used, or the 

intensities were downloaded from the source systems. The phenotypes were manually turned 

into CDISC SDTM concepts that then were stored in a standardized hierarchy. 

6.4 Summary 

The tranSMART system allows clinicians, translational scientists and discovery biologists to 

interrogate aligned phenotype/genotype data to enable better clinical trial design or to stratify 

disease into molecular subtypes with great efficiency. A fine-grained, role-based authorization 

model throughout the application has been implemented so that study level permissions are 

enabled and can be controlled by the study owners. During curation the study owners are 

actively involved in reviewing and approving the loading and standardization of the data from 
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their studies. This approach greatly enhanced the cooperation of the study owners and the 

ultimate success of the data warehouse. 

 

This chapter introduced a system that meets many, although certainly not all, of the ideal 

translational information processing goals described in chapter 4 and can be used freely by 

anyone. At the time of this writing a hosted implementation of tranSMART, created by the 

eTRIKS project, is available at https://portal.etriks.org/portal/. There are over 80 public-

domain studies available on this tranSMART instance which can be effectively used to assess 

tranSMART for fit for purpose for projects of interest. Moreover, readers wishing to learn 

further details should review documentation on the tranSMART/I2B2 Foundation site 

(https://transmartfoundation.org/) and/or contact the foundation for additional information 

regarding tranSMART resources. 

https://portal.etriks.org/portal/
https://transmartfoundation.org/
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Chapter 7: eTRIKS Analytical Environment: A 

Practical Platform for Biomedical Data Analysis 

Axel Oehmichen 

7.1 Toward large scale data analysis in Life Science 

The volumes of data collected in medical sciences is increasing. An example from genomics 

illustrates the growth very well: next-generation sequencing has led to a rise in the number of 

human genomes sequenced every year by a factor of 101 2 far outpacing the development in 

data analysis capacity. In addition to large scale sequencing facilities and the emergence of 

medical devices contributing to analytical challenges based on volume, data is also increasingly 

heterogeneous due to advances in instrumentation leading to a variety of physiologic measures 

that, with corresponding analysis methods and software, can be used for many purposes. Data 

may be incomplete, incorrect, inaccurate, and/or irrelevant depending on the type and source 

and requires substantial preparation prior to analytic use as discussed in prior chapters. 

 

Massive amounts of data require scalable infrastructure to process and analyze. Moreover, the 

infrastructure needs to accommodate the steady emergence of novel algorithms and data 

processing, and integration tools. The eTRIKS Analytical Environment (eAE) is an example 

of such an infrastructure capable of analyzing and exploring massive amounts of medical data. 

The eAE is a modular framework with which users can rapidly add and replace analytics tools 

and modules. The system is built upon established technologies and has been demonstrated to 

manage scale with respect to increases in both the number of users and processed data volumes. 

The eAE has provided the computational environment for several successful research projects. 

OPAL3, a project needing to analyze terabytes of location data for public health research and 

monitoring, has leveraged the eAE for data processing and analysis. 

7.2 Design principles and core concepts 

The eTRIKS Analytical Environment aims to enable the analyses of a very broad range of users 

ranging from biologists with limited computing background to computational specialists. 

Medical doctors with little or no programming experience must use interactive tools to perform 

an analysis. However, statisticians and bioinformaticians have an extensive range of highly 

programmable command line mathematical environments, such as R, as well as complete 

programming language environments, such as Python, that provide extensive support for 

numerical computing and machine learning. Regardless of the toolset chosen, large scale 
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analysis requires seamless and highly efficient transfer of data between data sources and 

distributed high-performance computational environments. 

  

Cost and administration efficiencies of multitenant operation and the ability of a single 

computing environment to host multiple unrelated applications and datasets simultaneously 

while individual users perceive their applications as being run on isolated infrastructure, were 

important. Collaboration support among users likely distributed geographically, which may 

seem contrary to multitenancy, was also an imperative.  

 

7.2.1 General Environment 

The eAE was designed with four layers - Endpoints Layer, Storage Layer, Management Layer, 

and Computation Layer. These layers aim to provide ease of use, modularity and scalability. 

These layers are loosely coupled to provide as much flexibility as possible. The modularity of 

this framework enables the straightforward addition and replacement of architectural 

components. 

  

The operating system used on both the physical and virtual machines as well as containers 

within this architecture is Ubuntu 16.04 LTS. This operating system is stable and supports a 

large spectrum of libraries and drivers. Other Linux distributions such as Centos or Debian can 

also be used and upgrading to version 18.04 LTS is possible. 

  
Figure 7.1: A schematic representation of the architecture of the eTRIKS Analytical Environment. 
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Each service is deployed in a Docker container (Docker is a platform that bundles applications 

with operating systems such that these can be deployed easily and consistently to a variety of 

hardware platforms) and the services communicate with each other asynchronously through 

REST APIs. This architecture supports continuous deployment across different host machines 

for scalability and resiliency. The platform is hosted behind a firewall and only the Interface 

service in the Endpoints Layer is exposed to the internet while all other services are interrelated 

only via an internal virtual private network. 

7.2.2 Endpoints Layer 

The Endpoints Layer hosts the containers which either provide the User Interface (UI) or the 

REST API allowing users to integrate third party external tools or interact directly with the 

platform. The Endpoints Layer also contains infrastructure to run small computations locally 

as well as user authentication, caching and auditing services. 

 

As set up at Imperial College London, the endpoints layer includes tranSMART 16.2, a novel 

translational research user interface called Borderline4  and a modified version of the Jupyter 

notebook for general analysis. The eAE scales the existing tranSMART advanced workflows 

while Jupyter and Borderline can each be used to create custom analysis processes and 

visualizations as well as to manage data lineage. The eAE logs all requests and check requests 

before launching analysis jobs. 

 

The Interface service provides the client APIs for queries and user management. All the 

requests to the eAE are made over HTTPS and are first verified by the Authentication service. 

The authentication method has evolved over progressive versions and will be detailed in the 

implementation section. Upon successful authentication, the Interface service validates the 

request and, if appropriate, the job request is created for the Management Layer to schedule. 

 

The Logging service logs the queries made to the platform. The log records all queries, both 

valid and invalid, for audit purposes and traceability. The invalid queries must be easily 

accessible to enable administrators for periodic analyses to detect trends of any possible attack 

on the system. Thus, the valid queries are stored in an append-only text file to avoid tampering. 

7.2.3 Storage Layer 

The Storage Layer maintains analytics results and enables caching (limited term storage of 

recently used data) to be implemented for specific endpoints (see tranSMART example) to 

avoid successive computing of the same analysis, thereby making analysis more efficient. All 

the large-scale data and meta-data associated with the platform (e.g. user details) are saved into 

the database via the Storage Layer. The Storage Layer supports all the other layers by providing 

replicated, distributed and scalable storage resources. 
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The Storage Layer provides scalable, replicated and sharded (automated partitioning of large 

data sets to increase retrieval performance) memory structures. Scalability and sharding 

empowers large-scale analyses while replication protects the platform against data loss due to 

node failures, network disruptions and other unexpected deleterious events. The eAE uses the 

MongoDB v3.6.0 NoSQL database, OpenStack for large scale object storage and PostgreSQL 

as RDBMS. 

 

MongoDB does not enforce rigid data structures (a.k.a schemas) and this flexibility is useful 

for creating the generalized cache service and for storing simple operational data such as 

usernames, query parameters, logging information, etc. MongoDB's native support for high 

throughput read operations coupled with a powerful query language made this database a good 

choice for implementing the Scheduling service. 

 

OpenStack Swift is a high availability, distributed object store that was leveraged for storing 

large files (up to several terabytes) that will be retrieved in total. Swift enables to store a very 

large amount of data efficiently, safely, and cheaply. 

7.2.4 Management Layer 

The Management Layer schedules the computation of the analyses on the compute nodes based 

on the availability of the nodes and type of analyses requested by the platform users. High 

availability is crucial for the management layer as is extensibility to ensure that new compute 

nodes can be used as soon as these are introduced to the compute cluster. 

 

The Scheduling and Management service guarantees that the system performs efficiently by 

periodically purging inactive jobs and decommissioning unresponsive compute nodes. 

Multiple scheduling and management services run concurrently to maximize system 

availability. 

7.2.5 Computation Layer 

The Computation Layer is responsible for executing the scheduled computations on the scale-

out infrastructure which can be a cluster, a cloud service or any other specialized hardware. It 

also enforces security and privacy as warranted for each analysis. Analyses results are stored 

in the Storage Layer along with the corresponding analysis parameters and other details 

pertaining to the analysis run. 

 

The Computation Layer must efficiently support a broad scope of analytical capabilities 

ranging from simple statistics to compute heavy deep learning models. Heterogeneous 

hardware (e.g. CPU, GPU (graphic processing) or ASIC (custom processing chips) are made 

available with the addition of new nodes possible without downtime. 

 

Jobs are run privacy-preserved while supporting on demand resource allocation (i.e. automated 

scaling). Scaling is implemented by creating docker containers of analytical tools and using the 
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Popular opensource Kubernetes orchestration platform to deploy the analytical containers and 

scale these automatically as needed. 

 

The Spark computation clusters, Hadoop file system (HDFS), Swift and MongoDB are all 

installed in bare metal environments with RAID-10 storage to obtain the best performances 

possible and fault-tolerance. Those instances are password protected and running in secure 

(HTTPS) mode to ensure private network communications. MongoDB connections are 

encrypted using the transport security layer protocol (TSL/SSL). The eAE currently uses 

Cloudera CDH 5.9.0 Hadoop deployment. 

 

The eAE would need to be adapted for certain cloud service, such as Amazon Web Services, 

or in-house compute clusters having alternate specifications. 

7.2.6 Interaction between layers 

 

Figure 7.1 illustrates the architecture of the eTRIKS Analytical Environment. 

 

1. Each user owns a Virtual Machine (VM) or a docker container having a modified 

version of the Jupyter server, a set of kernels (R, Python, Spark, etc.) and a minimal set 

of standard libraries (Numpy, Scipy, Scikit-learn}, Bioconductor, etc.). This instance is 

one of the points of access of the eTRIKS Analytical Environment. The users can 

upload their data sets to the server and write their own analysis scripts. Jupyter, through 

the selected kernel, sends the requested computations to the local engines which in turn 

send results back to Jupyter. If the user requires more compute power, they can 

remotely submit their script to the interface service to be scheduled on a larger 

centralized cluster. When the required resources become available, the scheduler 

launches the computation. The Spark clusters are Hadoop stack production clusters 

installed on physical servers for performance reasons. Each one runs CDH 5.9.0 with 

the full Hadoop stack. The GPU clusters rely on TensorFlow 1.0 for Deep Learning and 

Nvidia CUDA processors. The R servers rely on Microsoft R Open, formerly known as 

Revolution R Open (RRO), which is the enhanced distribution of R from Microsoft 

Corporation. The results are sent back to Jupyter or MongoDB (depending on the user's 

choice). The user can explore the results using advanced visualizations (lightning, etc.). 

2. The second native entry point to the eAE is through a tranSMART's plugin specifically 

developed for this integration. The plugin manages and interfaces with the MongoDB 

cache. The plugin can submit a job to the Interface service using data stored either in 

MongoDB or in tranSMART. The results are sent to the MongoDB cache. The user can 

explore the results in tranSMART and compare with previously run computations held 

in their personal cache history. 

3. The third native entry point to the eAE is through Borderline. Borderline is a user facing 

sets of services responsible for locating data, querying it across multiple heterogeneous 
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sources, tracking its provenance as it travels through the platform and allowing users to 

maintain complete control over the process. Borderline makes the eAE and the eTRIKS 

Data Platform (eDP) including tranSMART and the eTRIKS Harmonization Service 

interoperable (Chapter 4). Besides allowing seamless data flow and tracking between 

these components, borderline provides enriched user experience. Borderline provides a 

dynamic query editor for selecting patient subgroups from the breadth of data available 

on a tranSMART instance. 

7.2.7 Security of the architecture 

The eAE manages risk using a combination of server-side security, authentication, audit and 

network security. However, those protections are only the core layer upon which adopters can 

build upon and further extend the eAE to meet the most stringent requirements. 

 

Server-side security: Many attacks on privacy and services employ a relatively large number 

of queries to circumvent protections (e.g. DDOS attacks, data leakage, etc.). To thwart brute-

force attacks on the client API, we developed a query rate limitation mechanism. An analyst 

can submit only a limited number of queries within a set period of time as defined by the curator 

(e.g. 100 queries in 7 days). The architecture supports secure execution of algorithms in 

sandboxed environments. This execution isolation comes at a cost to performances but prevents 

rogue algorithms from inappropriately accessing other computations which might be running 

at the same time on the platform. The sandboxing relies on AppArmor ("Application Armor") 

which is a Linux kernel security module. The module supplements the traditional Unix 

discretionary access control (DAC) model by providing mandatory access control (MAC). 

 

Authentication: Access is provided only for authenticated users having the right authorization. 

Three levels of users are supported: super admin, admin and standard users. Admins can create, 

delete and check users through the API as well as monitor the status of the services. Super 

admins have the additional right to create new admins. In addition to those core levels, the 

users are given additional rights levels for data and analysis control. For example, in the context 

of the population density algorithm (see in Privacy section), different users will be authorized 

different levels of regional access: one user might be authorized to access at commune level 

while another only at regional level. The granularity can be temporal as well where the access 

time frame can be larger for some users compared to others. Some further restrictions can also 

be implemented such as maximum sampling size for a given analysis.  

 

Audit: Auditing is an important part of the security of the platform as it enables system 

administrators, governance board members for ethical oversight and data owners to review all 

previous queries and detect tentative of attacks by logging illegal requests. The auditing helps 

preserve the health of the clusters as well by providing the computation times of the queries 

and cluster loads to the administrators. Those indicators can help them identify nodes that might 

be throttling or clusters which are over/under utilized. The administrators could then act on 



Chapter 7: eTRIKS Analytical Environment: A Practical Platform for Biomedical Data Analysis 

175 
 

them by commissioning or decommissioning nodes as pertinent and thus provide the best 

experience to users. 

 

Network security: To prevent attacks that intercept HTTP packets, all communications with 

the API and between the different services will be exclusively done in HTTPS. Any non-

HTTPS requests will be discarded and logged for auditing purposes. Furthermore, the 

connection of the services to MongoDB are encrypted using TSL/SSL. To shield the platform 

from external brute force attacks, the layers are deployed across two different VLANs. This 

distributed architecture exposes only the Interface service of the Endpoints Layer to client’s 

applications while the data and compute services remain safely hidden from the rest of the 

network. 

7.2.8 Comparison with similar products 

A general-purpose analytical platform usually refers to systems that allow analysts to send 

many queries of different types using a rich and flexible query language. Many federated and 

distributed systems have been developed to analyze medical data. Among the most prominent 

ones (excluding the eTRIKS Analytical Environment) include IBM Platform Conductor, 

Arvados, Berkeley Open Infrastructure for Network Computing (BOINC) and Petuum. Those 

platforms share some common features (scalability, scheduling, storage, etc.) although each 

was designed for specialized user needs. 
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Table 7.1: Summary of the differences in the main features provided by comparable existing systems. 

 

It is interesting to notice that beyond the technical capabilities, new types of features (e.g. 

privacy and provenance) start to emerge as new problematics and legislation are arising. 

7.3 Case Studies with the eTRIKS analytical environment: analytics for 

tranSMART 

To illustrate how the eTRIKS Analytical Environment can be used for managing and analyzing 

large scale translational research data in tranSMART, we have implemented three 

bioinformatics analysis pipelines: an iterative model generation and cross-validation pipeline 

for biomarker identification, a general statistical analysis pipeline for hypotheses testing, and 

a pathway enrichment pipeline using KEGG to demonstrate the performance of the proposed 
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architecture. Unlike the two others, the pathway enrichment forms part of the iterative model 

generation pipeline or a pipeline on its own. 

 

Each pipeline was implemented in the same fashion: the code was prototyped locally in a 

container (to ensure that the code operated as expected using a subset of the data or a smaller 

number of iterations) and the full computation was then submitted to the central clusters. All 

those workflows are designed to be highly parallelizable and, to enable their seamless 

scalability, Spark has been chosen for their implementation. 

7.3.1 Iterative Model Generation and Cross-validation Pipeline 

The iterative model generation and cross-validation pipeline scales at the same rate as the 

underlying hardware, a crucial aspect given the massive amounts of data involved. During 

clinical trials, collecting additional samples, if possible, may be hazardous and costly. In these 

cases, cross-validation is a powerful approach to prevent from testing invalid hypotheses 

suggested by the data (called “Type III errors”5). Cross-validation is a technique for assessing 

how a statistical or computational model will generalize to an independent data set. It is mainly 

used in settings where prediction is the main objective, and one aims to estimate how good a 

predictive model is in practice. In a prediction problem, a model is usually given a dataset of 

known outcomes (i.e., training set) on which the model is trained, and a dataset in which 

outcomes are unknown, against which the model is tested (i.e., testing set). To reduce 

variability, the dataset can be partitioned for multiple rounds of cross-validation. 

  

 
Figure 7.2:  Iterative model generation and cross-validation pipeline 

 

The workflow of the pipeline is shown in Figure 7.2, and it has been widely used in translational 

research, identifying the gene signature for stage II colon cancer as an example6. In practice, 
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many statistical and computational approaches can be used for model generation. Possible 

candidates include, but not limited to, linear or nonlinear Support Vector Machine (SVM), 

Logistic Regression, Linear Regression, Alternating Least Squares, Lasso. Indeed, instead of 

distributing subsets of the data across different nodes (first type of parallelization) to parallelize 

the computation of the model, we can distribute different sets of parameters (second type of 

parallelization) on every worker to generate a different model every time. 

 

The drawback with the second type of parallelization compared to the first one is that when 

dealing with large datasets, the working nodes need to be equivalently large and the network 

might become a performance bottleneck. 

 

This pipeline allows us to scale by distributing the computation to multiple clusters that work 

independently to generate models. Each cluster randomly samples the training set and starts 

generating models using the selected algorithm. Each model is then tested against the test set 

to evaluate its fitness according to the specified set of indicators. With the increasing number 

of iterations, it is expected that the model will converge to the optimal solution. 

 

Biomedical datasets are typically comprised of large numbers of features, i.e. individual 

measurable properties that describe the observed phenomenon. To find the best fit model 

having the least amount of bias a family of models are generated using the same dataset with 

different selections of features. Once the model is built, a certain number of features can be 

removed, and a new model is generated using the remaining features (Figure 7.2). An unbiased 

approach randomly removes a selected number of features and then determines whether the 

reduced feature set improves the fitness of the model. If the fitness is improved the process 

progresses to the next iteration. If the fitness does not improve then another set of features is 

removed, and the model is again assessed. A fixed small number of features removed at every 

iteration will promote the predictive accuracy of the model but is computationally expensive. 

Stepwise feature reduction based on feature set size (e.g., a percentage of the total number of 

features) may speed up the process. 

 

A more efficient approach is to introduce a small amount of bias by lowering the chances of a 

feature, which we know, or highly suspect, a priori to be a factor, being removed. By 

introducing this bias, models will naturally tend to converge to a (presumably) more optimal 

solution much faster. Vladimir Vapnik's group7, when working in the context of gene selection, 

suggested using weight magnitude as ranking criterion for features, computing the ranking 

criteria: ci = (wi)
2 for all “i” and find the feature with smallest ranking criterion f = argmin(c). 

 

The scoring used to assess the fitness of models can be done through a wide variety of 

measures, such as Area Under the Receiver Operating Characteristic (ROC) Curve - AUC, 

Sensitivity or True Positive Rate (TPR), Specificity or True Negative Rate (TNR), Negative 

predictive value (NPV), Positive predictive value (PPV) and F1-score. No metric is suitable 
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for every situation. These metrics can only eliminate obvious “failures” due to performance, 

complexity, overfitting or stability. The Hazard Ratio (HR) from Cox proportional hazards 

regression8 can be used to adjudicate models. 

 

Once distributed processing is complete the results are written to a NoSQL cache on the eAE 

from which candidate models compared and the information concerning the models are 

provided to the analyst such that the best model(s) can be selected. 

 

This type of unbiased approach to model generation is not well supported on standard 

platforms. Model generation typically requires long run times of hours to days, risking loss of 

intermediate results in cases of unexpected infrastructure failures (i.e. crashes). Mechanisms 

would need to be implemented to avoid rerunning the entire job in the event of a premature 

halt due to an infrastructure failure. The eAE leverages versioning mechanisms of Spark to 

persist intermediate datasets and greatly reduce the impact of infrastructure failure. 

 

The integration of Spark with the eAE enables users to run these large-scale compute intensive 

experiments easily and seamlessly through the application/interface of their choice. The 

stability, robustness and fault-tolerance of the platform enables high performance 

computations, even if a physical machine or a worker fails, as failed tasks are automatically 

rescheduled. The integration of Docker, Jupyter, Toree and the eAE have enabled users to 

implement and prototype their algorithms efficiently without the need to prepare custom 

analysis environments in which these components are integrated separately for each project 

undertaken. Finally, once the algorithm is ready, submission to the centralized high-

performance cluster requires no further development. 

7.3.2 General statistics 

The general statistical analysis pipeline aims to provide statistical insights about datasets, 

without any prior statistical knowledge, by performing multiple statistical tests on a given data 

set. Statistical methods test scientific theories when observations, processes or boundary 

conditions are stochastic. Performing multiple tests on the same data set at the same stage of 

analysis increases the chance of obtaining at least one invalid result. The benefit obtained from 

performing statistical methods across whole datasets, however, far offsets this drawback. 

 

The first step of this pipeline is to divide the data into their basic data types: numerical, binary, 

categorical, and unknown. Any data element with three or less valid data points and any 

irrelevant data (e.g. phone numbers and free text) are assigned to the unknown category. These 

data are not discarded as they might be used to extract insights at a later stage. The numerical 

data is next subset into groups of normally distributed and non-normally distributed datasets. 

Two methods are used to determine whether a variable follows a normal distribution: Shapiro-

Wilk's test and Anderson-Darling's test. The variable is tagged as normally distributed only if 
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both tests yield a positive answer. Applicable statistical methods are then applied to the data in 

each category. 

  

 
Figure 7.3: Modelling of the pipeline for an unbiased approach to statistical testing of whole datasets. 

 

For the categorical data, the χ2 test is extensively used for assessing the associations between 

different clinical variables. The χ2 test determines whether there is a significant difference 

between the expected frequencies and the observed frequencies in one or more categories. If 

one variable is categorical and one is numerical, the analysis of variance (ANOVA) test is used 

to statistically determine whether the means of several groups are equal, which complements 

the χ2 test. The binomial test, an exact, two-sided test of the null hypothesis that the probability 

of success in a Bernoulli experiment is p (we chose p=0.5), is used for binary data elements. 

 

We use two methods to analyze the relationships between numerical variables, logistic 

regression (LR) analysis and correlation analysis. LR has been successfully used to identify 

independent predictors of prostate cancer to improve the accuracy of diagnosis9. LR models 

are based on the fit of the odds of comparable conditions requires and no specific distribution 

assumption (e.g., Gaussian distribution). However, LR is often found to be less sensitive than 

other approaches. For correlation analysis, we choose the Spearman and Pearson correlations. 

The Spearman correlation between two variables is equal to the Pearson's correlation between 

the rank values of those two variables; while Pearson's correlation assesses linear relationships, 

Spearman's correlation assesses monotonic relationships. If there are no repeated data values, 

a perfect Spearman correlation of +1 or -1 occurs when each of the variables is a perfect 

monotone function of the other. Bonferroni's correction is used for multiple corrections. 
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7.3.3 Pathway Enrichment 

A common approach to interpreting gene expression data is gene set enrichment analysis based 

on the functional annotation of the differentially expressed genes. This is useful for finding out 

whether the differentially expressed genes are associated with a certain biological process or 

molecular function. The Gene Ontology, containing standardized annotation of gene products, 

is commonly used for this purpose. The approach works by comparing the frequency of 

individual annotations in the gene list (e.g. differentially expressed genes) with a reference list 

(usually all genes on the microarray or in the genome). 

 

To help the scientists to select the right model after the list of genes has been output by the 

Iterative Model Generation pipeline or simply do a pathway enrichment using a list of genes 

obtained from another analysis, a pathway enrichment using KEGG and GO with multiple test 

corrections (Bonferroni, Holm-Bonferroni and/or FDR) on the sub selection of high scoring 

models has been implemented. The enrichment is done using a two-sided Fisher's exact10 test 

after building the associated contingency table. 

 

Those enrichments add another insight to the results and an additional quality check to every 

model generated. The Spark implementation facilitates large-scale enrichments by building the 

models concurrently unlike traditional platforms that wait for the final model to be output 

before performing the enrichment. Moreover, the number of pathways and their complexity 

gradually increases which requires correspondingly increasing compute power. The proposed 

implementation offers a way to overcome the increasing number of pathways and allows 

integration of the enrichment. 

 

The following example describes the application of the eAE to a real-world research program.  

7.4 DeepSleepNet: An eAE Case Study 

This work was carried out in collaboration with researchers at the Data Science Institute at 

Imperial College London who specialize in researching sleep disorders. This example 

highlights well the benefits researchers can gain by leveraging the eTRIKS Analytical 

Environment and TensorLayer. This specific research proposes a new deep learning model, 

named DeepSleepNet11, for automatic sleep stage scoring based on raw single-channel Electro 

Encephalogram (EEG). 

7.4.1 Introduction 

Sleep plays an important role in human health. Being able to monitor how well people sleep 

has a significant impact on medical research and practice12. Typically, sleep experts determine 

the quality of sleep using electrical activity recorded from sensors attached to different parts of 
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the body. A set of signals from these sensors is called a polysomnogram (PSG), consisting of 

an electroencephalogram (EEG), an electrooculogram (EOG), an electromyogram (EMG) and 

an electrocardiogram (ECG). This PSG is segmented into 30 second epochs, which are then be 

classified into different sleep stages by the experts according to sleep manuals such as the 

Rechtschaffen and Kales13 and the American Academy of Sleep Medicine14. This process is 

called sleep stage scoring or sleep stage classification. This manual approach is, however, 

labor-intensive and time-consuming due to the need for PSG recordings from several sensors 

attached to subjects over several nights. 
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Figure 7.4: An overview architecture of DeepSleepNet from Supratak et al. 

 

The overview is consisting of two main parts: representation learning and sequence residual 

learning. Each trainable layer is a layer containing parameters to be optimized during a training 
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process. The specifications of the first convolutional layers of the two CNN depends on the 

sampling rate (Fs) of the EEG data. 

 

The new approach proposes a model for automatic sleep stage scoring based on raw single-

channel EEG by utilizing the feature extraction capabilities of deep learning. The architecture 

of DeepSleepNet consists of two main parts as shown in Figure 7.4. The first part is 

representation learning, which can be trained to learn filters to extract time-invariant features 

from each raw single-channel EEG epochs. The second part is sequence residual learning, 

which can be trained to encode the temporal information such as stage transition rules from a 

sequence of EEG epochs in the extracted features. 

7.4.2 Representation Learning 

Two CNNs with small and large filter sizes were employed at the first layers to extract time-

invariant features from raw single-channel 30-s EEG epochs. The small filter is well suited to 

capture temporal information, while the larger filter is better suited to capture frequency 

information. 

The model has been designed with four convolutional layers and two max-pooling layers for 

each CNN. Each convolutional layer performs three operations sequentially: 1D-convolution 

with its filters, batch normalization15, and applying the rectified linear unit (ReLU) activation 

(i.e., relu(x)=max(0, x)). The max operation has been used in each pooling layer to down 

sample inputs. Figure 7.4 illustrates the specifications of the filter sizes, the number of filters, 

stride sizes and pooling sizes. Each {conv and max-pool block shows a filter size, the number 

of filters, and a stride size. The dropout blocks have been put in place to help preventing 

overfitting, more details will be provided in Section regularization. 

 
In order to extract the i-th feature ai from the i-th EEG epoch Xi, and assuming there are N 30-

s EEG epochs X1, …. Xn from a single-channel EEG, we use two CNNs in the following 

fashion: 

The 30-s EEG epoch Xi are transformed into feature vectors hi using the function called 

CNN(Xi) which uses a CNN). θs and θl are parameters of the CNNs with small and large filter 

sizes in the first layer respectively. The outputs from the two CNNs are concatenated by the || 

operation. {a1, …, an} are then forwarded to the sequence residual learning part as linked 

features. 
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7.4.3 Sequence Residual Learning 

The sequence residual learning part was based on the residual learning framework theory16. 

Bidirectional-LSTMs17 and a shortcut connection (see Figure 7.4 are the two main components 

of this part. 

 

Two layers of bidirectional-LSTMs were employed to learn temporal information such as stage 

transition rules18 which sleep experts use to evaluate the most likely forthcoming sleep stages 

based on the previous stages. For example, the AASM manual recommends that if a subject is 

in sleep stage N2, but scores epochs with low amplitude and mixed frequency EEG activity, 

will still be classified as N2 even though K complexes or sleep spindles are not present. The 

bidirectional-LSTMs can learn to remember that specificity it has seen in stage N2 and continue 

to score successive epochs as N2 even if they still detect the low amplitude and mixed 

frequency EEG activity. Bidirectional-LSTMs are an extension of LSTM19 by adding two 

LSTMs process forward and backward input sequences independently20. As the outputs from 

forward and backward LSTMs are not connected to each other, the model is capable to use 

information both from the past and the future. In order to inspect their current memory cell 

before the modification, we used peephole connections21 22 in our LSTMs. 

 

With the intent to enable the addition of temporal information to our model, we used a shortcut 

connect to reformulate the computation of this part into a residual function. Therefore, the 

model can learn from the previous input sequences into the feature extracted from the CNNs. 

A fully connected layer in the shortcut connection was used to transform the features from the 

CNNs into a vector which in turn is added to the output from the LSTMs. The matrix 

multiplication with its weight parameters, batch normalization, and the application of the ReLU 

activation are then carried out by this layer sequentially. 

Formally, suppose there are N features from the CNNs {a1, …, aN} arranged sequentially and 

t=1...N denotes the time index of 30-s EEG epochs, our sequence residual learning is defined 

as follows:  

• LSTM represents a function that processes sequences of features at using the two-layers 

LSTM parameterized by θf and θb for forward and backward directions. 

•  h and c are vectors of hidden and cell states of the LSTMs. ℎ0
𝑓
 , 𝑐0

𝑓
,  ℎ𝑁+1

𝑏
and 𝑐𝑁+1

𝑏  of 

forward and backward LSTMs are set to zero vectors.  

• FC represents a function that transform features at into a vector that can be added 

(element-wise) with the concatenated output vector ℎ𝑡
𝑓 || ℎ𝑡

𝑏 from the bidirectional-

LSTMs. 
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Figure 7.4 presents the specifications of the hidden size of forward and backward LSTMs along 

with the fully connected layers. The fc block shows a hidden size, while each bidirect-lstm 

block shows hidden sizes of forward and backward LSTMs. 

During the training and testing of the models, the hidden and cell states states ℎ𝑡
𝑓  ,ℎ𝑡

𝑏 , 𝑐𝑡
𝑓
 and 

𝑐𝑡
𝑏  are re-initialized to zeros at the beginning of each patient data. This is put in place to ensure 

that only temporal information from the current subject data is used by the model for both 

training and testing. 

7.4.4 Model Specification 

For the representation learning part, we followed the guideline provided by Cohen et al.23 for 

capturing temporal and frequency information from the EEG when selecting the parameters of 

the CNN-1 and CNN-2. On one hand, the filter size of the conv1 layers of the CNN-1 was set 

to Fs/2 (half of the sampling rate (Fs)), and its stride size was set to Fs/16 to detect when certain 

EEG patterns appear. On the other hand, the filter size of the conv1 layer of the CNN-2 was set 

to Fs x 4 to better capture the frequency components from the EEG. And, as it is not necessary 

to perform a fine-grained convolution to extract frequency components, its stride size was also 

set to Fs/2 (which is higher than the conv1 layer of the CNN-1). Finally, based on Szegedy et 

al.24 observation that the use of multiple convolutional layers with a small filter size (instead 

of a single convolutional layer with a large filter) can reduce the number of parameters and the 

computational cost while retaining similar level of model expressiveness, we adopted small fix 

sizes for the filter and stride sizes of the subsequent convolutional layers conv2_[1-3]. 

The parameters of the bidirect-lstm and fc layers were set to be smaller than the output of the 

representation learning part (set to 1024) for the sequence residual learning part. This method 

was put in place to prevent overfitting and that only the important features get selected and 

combined by our model. 

7.4.5 Two-Step Training Algorithm 

Models built on large sleep datasets usually suffer from class imbalances issues (i.e., learning 

to classify only the majority of sleep stages). In order to prevent this from happening, we 

developed the two-step training algorithm as solution to effectively train our model end-to-end 

via back propagation and prevent the model from suffering class imbalance problem. The 

representation learning part of the model is first pre-trained by the algorithm, then the algorithm 

fine-tunes the whole model using two different learning rates. We used the cross-entropy loss 

to quantify the agreement between the predicted and the target sleep stages in both training 

steps. The last layer in the DeepSleepNet architecture (see Figure 7.4) is a combination of the 

softmax function and the cross-entropy loss which are used to train our model to output 

probabilities for mutually exclusive classes. 
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Pre-training 

The pre-training step starts with a supervised pre-training on the representation learning part 

of the model (see lines 1-8 in Algorithm 1) with a class-balanced training set to avoid any 

overfitting on the majority of sleep stages. Specifically, the two CNNs are extracted from the 

model and then stacked with a softmax layer (softmax). The sole use of the stacked softmax 

step is to pre-train the two CNNs and the parameters are discarded at the end of the pre-training. 

We denote these two CNNs stacked with softmax as pre_model. Similarly, to the pre-training 

part, the pre_model is trained with a class-balanced training set using a mini-batch gradient-

based optimizer called Adam25 with a learning rate (lr) and the softmax layer is once again 

discarded at the end of the pre-training. The class-balanced training set is obtained by 

oversampling the minority sleep stages in the original training set until all sleep stages have 

the same number of samples. 
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 Fine-tuning 

The fine-tuning step starts with a supervised fine-tuning on the whole model (see lines 9-19 in 

Algorithm 1) with a sequential training set. This step encodes the stage transition rules into the 

model as well as the necessary adjustments on the pre-trained CNNs. The θs and θl parameters 

from the pre_model replace the ones from the CNNs of init_model which in turn result in a 

model. That model is then trained on the sequence training set using a mini-batch Adam 

optimizer but this time with two different learning rates (lr1 and lr2). The lower learning rate lr1 

is used for the CNNs part (as the CNNs part has already been pre-trained), while the higher 

learning rate lr2 is used for the sequence residual learning part. A softmax layer is added after 

them. During the development phase, we noticed that using the same learning rate to fine-tune 

the whole network resulted in the excessive adjustment to the sequential data (which were not 

class-balanced) of the pre-trained CNN parameters. Consequently, the model started to overfit 

to the majority of the sleep stages toward the end of the fine-tuning. It is from this observation 

that we decided to use two different learning rates during fine-tuning. Furthermore, exploding 

gradients is a well-known problem when training RNNs such as LSTMs26. Therefore, we use 

a heuristic gradient clipping technique to prevent the exploding gradients by rescaling the 

gradients to smaller values using their global norm whenever they exceed a pre-defined 

threshold. The sequential training set has been constructed by reorganizing the original training 

set in chronological order across all subjects. 

7.4.6 Regularization 

As we highlighted before, overfitting has been a major issue we faced. To prevent overfitting 

problems, we used regularization techniques. During the training phase, and only the training 

phase, a dropout27 28 technique that randomly sets the input values to 0 (i.e. dropping units 

along with their connections) with the specified probability was used. All dropout layers used 

a probability of 0.5 throughout the model. 

 

Subsequently, we used a L2 weight decay technique which adds a penalty term into a loss 

function to prevent large values of the parameters in the model (e.g. exploding gradients). This 

technique was applied only on the first layers of the two CNNs. Indeed, as explained by 

Pascanu et al.29 , L2 weight decay can limit the model capabilities of learning long-term 

dependencies. Besides, we found that, without weight decay, the filters of the first layers of the 

CNNs overfitted to noises or artifacts in EEG data. By using an appropriate amount of weight 

decay, the model learned smoother filters (e.g. containing less high-frequency elements) which 

resulted in slightly performance gains. The weight decay parameter that defines the degree of 

penalty, lambda, was set to 10-3. 
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7.4.7 Results 

 

Data: Evaluation of the model against other datasets is important in order to access the quality 

of the model and we evaluated our model using different EEG channels from two public 

datasets: Montreal Archive of Sleep Studies (MASS)30 and Sleep-EDF3132.  

 

MASS: The Mass dataset was organized in five subsets of recordings (SS1-SS5) which 

followed their research and acquisition protocols. Among those five subsets, we selected only 

SS3 which contained PSG recordings from 62 healthy subjects (age 42.5 ± 18.9). Each 

recording contained 20 scalp-EEG, 2 EOG (left and right), 3 EMG and 1 ECG channels. The 

EEG electrodes were positioned according to the international 10-20 system, and EEG and 

EOG recordings were pre-processed with a notch filter of 60 Hz, and band-pass filters of 0.30-

100 Hz (EEG) and 0.10-100 Hz (EOG). All EEG and EOG recordings had the same sampling 

rate of 256 Hz. These recordings were manually classified into one of the five sleep stages (W, 

N1, N2, N3 and REM) by a sleep expert according to the AASM standard 33 . Subject's 

recordings exhibit movement artifacts at the beginning and the end of each record; those 

artifacts have been labelled as UNKNOWN. The evaluation was done without any further pre-

processing using the F4-EOG channel, which was obtained via montage reformatting34. 

  

Sleep-EDF: The Sleep-EDF contained only two sets of subjects from two distinct studies. The 

first study was age effect in healthy subjects (SC), while the second one was Temazepam 

effects on sleep (ST). We used 20 subjects (age 28.7 ± 2.9) from SC. Each PSG recording 

contained 2 scalp-EEG signals from Fpz-Cz and Pz-Cz channels (@100Hz), 1 EOG (horizontal 

@100Hz), 1 EMG, and 1 oro-nasal respiration signal. Unlike in the MASS dataset, the R&K 

standard35 was followed for the manual sleep stages classifications resulting in eight classes 

(W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN). The evaluation was done without 

any further pre-processing using the Fpz-Cz and Pz-Cz channels and merging the N3 and N4 

stages into a single stage N3 to use the same AASM standard as the MASS dataset. Those two 

studies keep extensive amounts of stage W (awake) at the start and the end of each recording 

creating an imbalance with the other classes without bringing any valuable information. For 

that reason, we only included only 30 minutes of such periods just before and after the sleep 

periods. 
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Table 7.2: Number of 30-s epochs from Supratak et al. for each sleep stage from two datasets 

 

Similarly, the MOVEMENT and UNKNOWN labels have been excluded as they did not 

belong to the five sleep stages36. Table 7.1 presents a summary of the number of 30-s epochs 

for each sleep stage from these two datasets.  

Experimental Design and Implementation 

The implementation of DeepSleepNet is an illustration of the user-friendliness for highly 

parallelisable computation and support for hardware accelerators (GPU in this instance) using 

the eAE. The eAE allows users to seamlessly and quickly configure and launch the complex 

training of multiple models concurrently. 

 

The implementation of the project had two major constraints: the first one was that the project 

involved three different researchers working concurrently on the workflow, and the second one 

was that the GPU cluster was only available outside of working hours. To make things even 

more complicated, the GPU cluster had to be switched between Windows and Ubuntu daily 

(with the exception of weekends). This switch happens forcefully in an automated fashion 

interrupting the computations in the morning. Thus, it was of paramount importance that the 

eAE restarts the compute services seamlessly and reschedule interrupted jobs whenever a 

resource becomes available. 

 

In order to overcome those constrains and develop the new workflow, an eAE Jupyter container 

was deployed on a specific box with two GPU resources available to enable the researchers to 

prototype their workflow simultaneously, share their code with one another seamlessly and 

access their data. To overcome the limited availability of the GPU cluster, the eAE's computes 

were deployed in containers that were configured to restart whenever the machine boots in 

Ubuntu. If the reported health of a compute node was unavailable, upon restart of the container, 

the eAE would commandeer the host machine of the failing container and attempt to restart up 

to three times the container automatically to ensure the good health of the cluster. 

 

In order to build and assess the quality of our model, we used a k-fold cross-validation scheme 

on the eAE, where k was set to 31 for the MASS and Sleep-EDF datasets. In each fold, we used 

recordings from 60 subjects to train the model and use the two remaining subjects to test the 

model. This process is repeated 31 times so that all recordings are tested. Finally, we combine 

the predicted sleep stages from all folds and compute the performance metrics. We ran a large 

number (several hundreds) of 31-fold cross-validation iterations for hyperparameters tuning of 
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the model and various experiments. Each cross-validation task takes roughly 6-7h to execute 

and the total execution time consequently is 170.5 hours. The eAE enabled the researchers to 

schedule during the day two iterations to run every night without any intervention necessary as 

the tasks would be triggered as soon as the compute nodes become available thanks the eAE's 

scheduler and management services. Then, we combined the predicted sleep stages from all 

folds and computed the performance metrics, which will be discussed in Section Performance 

Metrics. 

 

The only alternatives to this would be either to schedule the tasks on each machine of the cluster 

individually or sequentially on one machine. The former is tedious and far from practical as 

one needs to give the user access to all machines, and the latter simply takes too long. The eAE 

provides a user-friendly web UI, which allows to train multiple models with different 

configurations concurrently across a cluster of high-performance machines. The scheduling of 

these tasks through the eAE takes approximately 2-3 minutes compared to an hour if done 

manually. Another benefit is the possibility to queue jobs to be run once machines become 

available. For this experiment, the GPU resources were only available at night as they were 

used for other projects during the day. The option to schedule two iterations at a time for 31-

fold cross-validation tasks to be run during the night, without any external intervention, is a 

key feature for the timely delivery of DeepSleepNet. In the case of this workflow, the 

experiments spanned almost an entire year and was made possible only thanks to the eAE. 

 

Performance Metrics 

The performances of the model were done using per-class precision (PR), per-class recall (RE), 

per-class F1-score (F1), macro-averaging F1-score (MF1), overall accuracy (ACC), and 

Cohen's Kappa coefficient   

( )37 38. The per-class metrics are computed by selecting a single class as a positive class, and 

then combining all other classes as a single negative class. The MF1 and ACC are calculated 

as follows: 

 

where TPc is the true positives of class c, F1c is per-class F1-score of class c, C is the number 

of sleep stages, and N is the total number of test epochs. 
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Training Parameters 

The representation learning part was pre-trained using the oversampled training set with a mini-

batch of size 100. The Adam optimizer's parameters lr, beta1, and beta2 were set to 10-4, 0.9 

and 0.999 respectively. Then, we equally split the sequences of 30-s EEG epochs from each 

subject data in the sequential training set into 10 sub-sequences (e.g. batch size was 10) to fine-

tune the whole model. For each step training, we fed a sequence length (e.g. epochs) of 25 from 

each sub-sequence yielding 250 epochs per step. The Adam optimizer's parameters were 

similar to the pre-training step except that the learning rate of each part of the model were lr1 

set to 10-6 and lr2 to 10-4, while the threshold for the gradient clipping was set to 10. The pre-

training and the fine-tuning steps were set to 100 epochs and 200 epochs respectively. Finally, 

as no validation was set in our evaluation scheme, no stopping had been put in place. 

 

We relied on existing literature recommendations for the default values of the parameters such 

as beta1, beta2 and the threshold of the gradient clipping. We evaluated different mini-batch 

sizes (from 50 to 200) during the pre-training, batch sizes (from 5 to 40), sequence lengths 

(from 5 to 40) during fine-tuning, and the learning rates (from 10-3 to 10-6) to obtain optimal 

performances in our model. For the batch normalization in conv and fc blocks, the ε constant 

of 10-5 was added to the mini-batch variance for numerical stability. The mean and variance of 

the training set, which were used as fixed parameters during testing, were estimated by 

computing the moving average with a decay rate of 0.999 from the sampling mean and variance 

of each mini-batch. 

  

Initial Experiments 

We initially conducted experiments for the design of the architecture and the parameters for 

DeepSleepNet with the first fold of the 31-fold cross-validation using the MASS dataset. For 

model architecture, we tried several configurations such as increasing/decreasing convolutional 

layers, changing the number of filters, the stride sizes, changing the number of hidden sizes in 

the bidirectional-LSTMs and the fully connected layer. The architecture in Figure 7.4 gave us 

the best performance. For regularization parameters, we tried several values for the weight 

decay parameters ranging from 10-1 to 10-5. The value of 10-3 gave us the best performance. 

 

For training parameters, we tried several values of learning rates ranging from 10-3 to 10-8. We 

also experimented with the mini-batch size (from 50 to 200) during the pre-training, the batch 

size (from 5 to 40) and sequence length (from 5 to 40) during fine-tuning. Other parameters 

such as beta1, beta2 and the threshold of the gradient clipping were chosen from the default 

values reported in the literature. The training parameters mentioned in Section Training 

Parameters gave us the best performance. With these settings, the pre-training and fine-tuning 

steps started to converge after 100 and 200 epochs respectively. 

Sleep Stage Scoring Performance 

Tables 7.3 and 7.4 show confusion matrices obtained from the cross-validation on the F4-EOG 

and the Fpz-Cz channels from the MASS and Sleep-EDF datasets respectively. Fpz-Cz channel 
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yielded the best performance when compared with the Pz-Oz channel from the Sleep-EDF 

dataset, thus we did not include the confusion matrix obtained from the Pz-Oz channel.  Each 

row and column represent the number of 30-s EEG epochs of each sleep stage classified by the 

sleep expert versus our model respectively. The numbers in bold indicate the number of epochs 

that were correctly classified by our model. The last three columns in each row indicate per-

class performance metrics computed from the confusion matrix. 

 

 
Table 7.3: Confusion matrix from Supratak et al. obtained from the cross-validation on the F4-EOG 

channel from the MASS dataset 

 

 
Table 7.4: Confusion matrix from Supratak et al. obtained from the cross-validation on the Fpz-Cz 

channel from the Sleep-EDF dataset 

 

The poorest performance came from the stage N1, with the F1 less than 60, while the F1 for 

other stages were significantly better, with the range between 81.5 and 90.3. It is also important 

to notice that the confusion matrix is almost symmetric via the diagonal line (except for the 

pair of N2-N3), which indicates that the misclassifications were less likely to be due to the 

imbalance-class problem 
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Figure 7.5: Examples from Supratak et al. of the hypnogram manually scored by a sleep expert (top) 

and the hypnogram automatically scored by DeepSleepNet (bottom) for Subject-1 from the MASS 

dataset. 

 

The figure 7.5 presents an example of a manually scored hypnograms done by a sleep expert 

against an automatically scored one by our DeepSleepNet model for Subject-1 from the MASS 

dataset. 

  

7.4.8 Comparison with state-of-the-art approaches 

 

 
Table 7.5: Comparison from Supratak et al. between DeepSleepNet and other sleep stage scoring 

methods that utilizes hand-engineering features across overall accuracy (ACC), macro-F1 score 

(MF1), Cohen's Kappa, and Per-class F1-Score (F1) 

 

Table 7.5 presents a comparison between our method and the state-of-the-art sleep stage 

scoring methods from the literature across ACC, MF1, kappa and F1. These methods include 
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the ones that utilize hand-engineered features39 40 41, CNNs only42 or LSTMs only43. The other 

methods' metrics were computed using the confusion matrices reported in their papers. The 

methods have been classified in two groups:  non-independent and independent training and 

test sets. 

 

The non-independent methods included parts of the test subjects' epochs in the training data, 

while the independent ones excluded all epochs of the test subjects from the training data. Non-

independent methods are usually bad practice as it has been demonstrated multiple times in the 

literature to be prone to overfitting while it has been shown that the non-independent scheme 

resulted in an improvement of the performance44. Thus, we only compared the performances 

of our method with the non-independent group and the numbers in bold indicate the highest 

performance metrics of all methods in each dataset for each group. 

 

Similar performances between our model and to the state-of-the-art methods have been 

achieved when using the same EEG channel and dataset. However, that performance has been 

achieve without compromising on the performances on the stage N1, which is the most difficult 

sleep stage to classify. This fact highlights that our method was not biased toward the majority 

of the sleep stages to the detriment of the minority ones. The kappa coefficient showed that the 

agreement between the sleep experts and our model were meaningful (between 0.61 and 

0.80) 45 . Interestingly, our model performed better when applied on the Fpz-Cz channel 

compared to the Pz-Oz, which is similar to Tsinalis et al. 46.  

7.4.9 Sequence Residual Learning 

 
Table 7.6: Confusion matrix from Supratak et al obtained from 31-fold cross-validation on the F4-

EOG channel from the MASS dataset using DeepSleepNet without Sequence Residual Learning 
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In order to assert the important of the sequence residual learning part, we ran a 31-fold cross-

validation on the F4-EOG channel of the MASS dataset without the sequence residual learning 

part (e.g. the pre model in Algorithm 1) in DeepSleepNet. Table 6 shows a confusion matrix 

obtained from the cross-validation and it can be observed that the F1 of all sleep stages, except 

the stage N3, were lower than the ones in Table 7.6. The root cause for this is an increase in 

the misclassifications between the pairs of N1-N2, N2-N3 and N1-REM. We assume that it 

may be caused by the effects of oversampling the training set to have balanced-class samples 

which resulted in the model tending to predict more of stages N1 and N3. From those results, 

we can conclude that the process to stack the pre-trained representation learning part with the 

sequence residual learning part, and then fine-tune both parts with sequential training set helped 

improve the classification performance. 

7.4.10 Model Analysis 

Now, we will attempt to better understand the underlying structure of the model by analyzing 

and comparing: 1) the learned filters in the first convolutional layers of the two CNNs in the 

representation learning part; and 2) the memory cells inside the bidirectional-LSTMs in the 

sequence residual learning part. 

 

The MASS dataset was used for the analysis with all of the 31 cross-validation folds. 

 We first tried to determine which filters were mostly active for each sleep stage (in the first 

convolutional layers of the two CNNs) by computing the average of the sum of the activations 

of all filters across samples of each sleep stage. We name {X1, ..., Xn} the N 30-s EEG epochs 

from each validation fold and we fed them to our model to obtain activations Z from the first 

convolutional layer of each CNN: {Z1 , ..., Zn}, where Zi in Rpxq and p and q are the activation 

output size and the number of filters of the first convolutional layer. 

  

The average of the sum of the activations of the filter k for the sleep stage c is computed as 

follows: 

 

where uc,k is the average of the sum of the activation of the filter k for sleep stage c, Zi,j,k is the 

j-th index of the activation vector Z of the filter k, and N is the number of EEG epochs that our 

model predicted as stage c. After we computed the uc,k of all filters for sleep stage c, we rescaled 

them into a range of 0 and 1. We denote this scaled k-dimension vector uc as filter activations 

for stage c. This process was reiterated for all sleep stages until we got the filter activations 

from all sleep stages. Once this was done, we stacked them together, and rearranged the order 

of the filters in a way that the filters that were most contributing for each sleep stage were 

grouped together. 



Chapter 7: eTRIKS Analytical Environment: A Practical Platform for Biomedical Data Analysis 

197 
 

 
Figure 7.6: Examples from Supratak et al of the filter activations from the first convolutional layers of 

the two CNNs obtained by feeding our model with data from 3 subjects. 

 

The filter activations from the small filters are on the left (a), and the larger filters are on the 

right (b). Each image has 5 rows and 64 columns, corresponding to 5 sleep stages and 64 filters 

respectively. Each pixel represents the scaled value of uc,k from (6.9), where 1 (e.g. active) is 

white and 0 (e.g. inactive) is black. Each row corresponds to the 64-dimension vector (e.g. k is 

64) for each sleep stage c. The first row is from stage W and the last row is from stage REM. 

Each image also has labels indicating which filters are mostly active for which sleep stages. 

  

Figure 7.6 shows an example of the filters activations with data from 3 subjects and from the 

small (a) and large (b) filters obtained by feeding our model. The five rows in the images 

correspond to the five sleep stages while the 64 columns correspond to the 64 filters. Each pixel 

represents the value of uc,k from equation 2 scaled into a range of 0 and 1, where 1 is active and 

white and 0 is inactive and black. Each row corresponds to the 64-dimension vector (e.g. k is 

64) for each sleep stage c. The first type of filter that appeared in this analysis were the ones 

that were mostly active for each sleep stage. For example, some of the small and large filters 

were mostly active for both sleep stages N2 and N3. The second type of filters that appeared 

was the ones that were mostly active for multiple sleep stages. Even though a global trend 

appears across subjects for the types of filters, we found that the number of active filters for 

different sleep stages varied across subjects and, for a small number of subjects, no small filter 

was active for stage N1. The latter could be linked to the fact that there were only a few stage 

N1 in the dataset. 

 

Then, in a second time, we analyzed how the bidirectional-LSTMs were used in our model to 

extract the temporal information from a sequence of EEG epochs. In order to do so, we looked 

at how the bidirectional-LSTMs managed their memory cells (e.g. c in (6.4) and (6.5)) using 

the visualization technique from Karpathy et al.47. It has been discovered that several memory 

cells of the forward LSTMs that were interpretable. Several cells were keeping track of the 
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wakefulness (stage W) or the sleep onset of the patient (stage N1), which would result in setting 

their values to active (e.g. positive values). Those cells would then become inactive (e.g. 

negative values) during sleep stages (stages N2, N3 and REM). 

 

Figure 7.7 illustrates the changes of a LSTM cell value according to a sequence of sleep stages 

predicted by our model. Other interpretable cells have been identified, such as the ones that 

started with a high value at the beginning of each subject data and then slowly decreased with 

each sleep stage until the end of the subject data, or the ones that only activated when a 

continuous sequence of stages N3 and REM appeared. The capacity to correctly identify the 

next sleep stages relies on the current status of each subject and stage transition rules48. The 

existence of these cells showed that the LSTMs inside the sequence residual learning part 

indeed learned to do those tasks accurately. 

 

 
Figure 7.7:  An example from Supratak et al of the LSTM cell that is active at the beginning of 

wakefulness (e.g. stage W) or the sleep onset (e.g. stage N1). The sequences of sleep stages are the 

predictions from DeepSleepNet on one subject data, arranged through time from left-to-right and top-

to-bottom. The background color of each stage corresponds to tanh(c), where +1 is blue and -1 is red. 
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7.4.11 Conclusion 

The results demonstrated that the model could flexibly be applied on different EEG channels 

(F4-EOG, Fpz-Cz and Pz-Oz) without any change both in the model architecture and the 

training algorithm. Also, the model achieved similar overall accuracy and macro F1-score 

compared to the state-of-the-art hand-engineered methods on both the MASS and Sleep-EDF 

datasets despite having different properties such as sampling rate and scoring standards 

(AASM and R&K). It is interesting to note that temporal information learned from the sequence 

residual learning part helped improve the classification performance. We can conclude that our 

proposed model was capable to automatically learn features for sleep stage scoring from 

different raw single-channel EEGs. This work has moved us one step closer to the possibility 

of remote sleep monitoring from home environments which would be less costly, less stressful 

for the patients and at a larger scale than current hospital setups. Remote monitoring could 

potentially help elder people and people with stress or sleep disorders on a daily basis and 

doctors to easily follow up on their patients. 

 

Conversely, the eAE has benefited as well from that close collaboration with the DeepSleepNet 

project. Firstly, the researchers have provided valuable feedback on the user experience side of 

the first implementation of the eAE. That feedback has been included in the design of the 

second version bringing more value to the users. Secondly, this project acted as a testbed for 

validating the architecture and identify shortcomings of the implementation which have been 

addressed in the second version (adopted by OPAL). As this use case illustrates, all those 

innovations have opened the way for better science and deep learning to build better 

applications. 
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Chapter 8: Select Case Studies 

8.1 eTRIKS-Associated Case Studies 

The DeepSleepNet case study, detailed in Chapter 7, is an exceptional example of the 

application of high-performance computation and analytic methodologies to address human 

health disorders. This chapter will detail two additional case studies in which eTRIKS 

colleagues, collaborating with client researchers, applied products, services and expertise 

described in earlier chapters to real-world translational science projects. Both case studies are 

peer-reviewed articles reprinted (for convenience to the reader) and cited in adherence to the 

licenses applied to each. 

 

Readers seeking additional case studies may find the following articles of interest which 

represent work undertaken by three leading translational research informatics teams, eTRIKS, 

the Avillach Laboratory at Harvard University and the Netherlands-based TraIT (Translational 

IT) consortium. 

 

1. Sijin He, May Yong, Paul M Matthews, Yike Guo, tranSMART-XNAT Connector 

tranSMART-XNAT connector—image selection based on clinical phenotypes and 

genetic profiles, Bioinformatics, Volume 33, Issue 5, 1 March 2017, Pages 787–788, 

https://doi.org/10.1093/bioinformatics/btw714 

2. Murphy, S. N., Avillach, P., Bellazzi, R., Phillips, L., Gabetta, M., Eran, A., McDuffie, 

M. T., & Kohane, I. S. (2017). Combining clinical and genomics queries using i2b2 - 

Three methods. PloS one, 12(4), e0172187. 

https://doi.org/10.1371/journal.pone.0172187 

3. Zhang C, Bijlard J, Staiger C, et al. Systematically linking tranSMART, Galaxy and 

EGA for reusing human translational research data. F1000research. 2017 ;6. DOI: 

10.12688/f1000research.12168.1. 

4. Venkata Satagopam, Wei Gu, Serge Eifes, Piotr Gawron, Marek Ostaszewski, Stephan 

Gebel, Adriano Barbosa-Silva, Rudi Balling, and Reinhard Schneider.Big Data.Jun 

2016.97-108.http://doi.org/10.1089/big.2015.0057 

 

8.2 Data and Knowledge Management in Translational Research: 

Implementation of the eTRIKS Platform for the IMI OncoTrack 

Consortium 

 

Wei Gu, Reha Yildirimman, Emmanuel Van der Stuyft, Denny Verbeeck, Sascha Herzinger, 

Venkata Satagopam, Adriano Barbosa-Silva, Reinhard Schneider, Bodo Lange, Hans Lehrach, 

Yike Guo, David Henderson, and Anthony Rowe  

https://doi.org/10.1093/bioinformatics/btw714
https://doi.org/10.1371/journal.pone.0172187
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8.1 is a reprint for convenience of the following article published under the Creative Commons 

Attribution 4.0 International License. 

 

Gu, W., Yildirimman, R., Van der Stuyft, E. et al. Data and knowledge management in 

translational research: implementation of the eTRIKS platform for the IMI OncoTrack 

consortium. BMC Bioinformatics 20, 164 (2019). https://doi.org/10.1186/s12859-019-2748-y 

8.2.1 Background  

The data coordination activities of large multi-stakeholder research collaborations are 

becoming more complex. In- creasingly, projects are citing the use of specialist know- ledge 

management technologies such as the tranSMART platform 1 as used by the IMI UBIOPRED, 

ABIRISK and OncoTrack projects 1 2 3 4. In reality, however, a  

 

The motivation to improve such technologies is therefore twofold: Firstly, the system provides 

a single place where data from all partners participating in the project can be deposited, 

collated, linked and then published back to the whole consortium. Secondly, the data are not 

just made available in curated form, but are also made accessible. This is achieved by the use 

of flexible user interfaces, combined with analytical and visualization tools that can be used by 

all stakeholders in the consortium and not just those with the specialist data handling skills 

such as bioinformaticians and statisticians. A consortium that provides a data coordination 

capability accelerates the work of the specialist data scientist who can access the raw data from 

a single location for specialist analysis. If this data coordination capability additionally includes 

a knowledge management technology, this can empower the wider community of scientists 

who are able to browse and generate hypotheses from all of the data in an accessible format. 

In this paper, we present the broad overall systems architecture developed by the eTRIKS 

consortium to accommodate the data management requirements of translational research 

consortia, using the IMI OncoTrack project as a use case. Additionally, we present a novel 

plug-in for tranSMART developed by the IMI eTRIKS consortium to overcome some of the 

limitations in cross-linking related datasets, such as those found when exploring and 

conducting correlation analyses using clinical data, experimental data from patient derived ex 

vivo models and high dimensional “omics” data. The data linking solution presented here is 

capable of handling and integrating the majority of data types encountered in translational 

medicine research, independent of the medical indication, and should therefore be generally 

useful for other consortia faced with similar data management challenges. 

In line with the challenges and requirements mentioned above, this knowledge management 

platform intends to provide a common point to access and share the accumulated, curated and 

pre-processed data sets as well as testing hypotheses and facilitating exchange of ideas. 

The intended users and usages are: 
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1. 1) All “end-users” that do not necessarily have advanced IT skills to be able to explore 

the integrated datasets with dynamic visual-analytics to test new hypotheses 

immediately, without asking bioinformaticians for every (explorative) analysis. 

 

2. 2) Bioinformaticians to select and download data (curated or raw) for specific analyses. 

 

3. 3) Data managers as well as researchers to collect, organise, store and disseminate data 

during the course of the project. 

 

4. 4) Project managers to oversee project progress in terms of available data and metadata. 

We would like to emphasis that the analytical tools provided on the platform are not meant to 

replace all advanced analyses that might be carried out by trained bioinformaticians and 

biostatisticians, who nevertheless can benefit from the reduced time and effort needed for data 

preparation. 

8.2.2 Implementation: The IMI OncoTrack consortium  

The IMI OncoTrack Consortium2 is an ambitious international consortium that is focused on 

advancing “Methods for systematic next generation oncology biomarker development”. As one 

of the Innovative Medicines Initiative (IMI) oncology projects, it brings together academic and 

industry scientists from more than twenty partner institutions in a research project to develop 

and assess novel approaches for identification of new markers for the treatment response of 

colon cancer. 

 

At the core of OncoTrack are two patient cohorts that, either prospectively at the point of 

primary colon cancer surgery or retrospectively at the point of metastasis surgery are sampled 

in order to build a colon cancer tissue bank containing both primary and metastatic tumour 

samples, together with associated normal tissues and biofluids. A part of each tissue sample is 

also used to develop in vitro 3D cell cultures and in vivo xenograft models that are used to 

study response to standard and experimental therapies. 

 

The tissue samples are processed to build collections of DNA, RNA, serum and circulating 

tumour cells that are then analysed to generate an in-depth description of the genome, 

transcriptome, methylome and proteome both of the tumour and the biological models. This 

approach uses a broad panel of methods such as next generation sequencing, proximity 

extension assays, reverse phase protein arrays, methylation arrays and mass spectrometry. The 
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patient-derived models also provide platforms to study the role of tumour progenitor or ‘cancer 

stem cells’ in the pathogenesis and evolution of colon cancers. 

 

Finally, data from all of these platforms are combined using a systems biology approach that 

can be used to make personalised predictions about how an individual may respond to therapy. 

The systems biology model of the cancer cell incorporates the combined results of genome, 

transcriptome, methylome and proteome analyses 5. 

 

The coordination of these different collections of data requires core systems to be used to 

perform the data collection and integration tasks. We would like to note that the “data 

integration” related to the work reported here are the steps and procedures to transform and 

store data from subject level, sample level and derived animal models as well as across different 

data types (drug response, different molecular and ‘omics data) in an interlinked manner in a 

data warehouse. In this way users are able to filter data in any layer/type and query related data 

in the same or different layer/type with a few mouse clicks and subsequently test their new 

hypotheses. As shown in Fig. 1 and detailed below, the OncoTrack data management work 

package implemented OpenClinica6 and developed the OncoTrack DB7 as central repositories 

for clinical and biological data, respectively. Here, we describe the collaborative effort to 

interface these data repositories with tranSMART, to provide an interactive user interface for 

exploration and preliminary data analysis. 

 

Fig.1 OpenClinica: electronic data capture 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig1
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The components of the OncoTrack data coordination operation. The platform comprises three 

major components: the Electronic Data Capture System (EDC, OpenClinica), the Central Data 

Repository (OncoTrack DB), and the Data Integration System (tranSMART). The OpenClinica 

EDC system is used to collect medical history and observational patient data from clinical sites 

during the studies and feeds the structured data to the Central Data Repository. The Central 

Data Repository, OncoTrack DB is a sample indexed content management system. Data and 

results generated in the laboratories (before integration) are deposited and exchanged here. In 

order to link the different data types and layers, the data collected in the OncoTrack DB are 

integrated in the Data Integration System, tranSMART. The tranSMART data warehouse 

provides deep linking and integration between the clinical and laboratory data and a set of tools 

for the exploratory analysis of the integrated data 
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The first component of the data coordination platform is the OpenClinica Electronic Data 

Capture system 

(EDC, https://www.openclinica.com/; https://github.com/OpenClinica/OpenClinica). 

OpenClinica provides the capability for the clinical sites to record electronically all of the 

patient data from different visits and to deposit these in a central database. The system enables 

the design of specific data entry conventions and data validation checks. These features ensure 

high data quality by providing all clinical sites with identical case report forms and by flagging 

data entry errors so they can be rapidly fixed. The user interface is made available through a 

standard web browser technology so that it requires no installation of software, allowing it to 

be readily adopted by all clinical sites. In order to ensure data privacy and compliance with 

data protection legislation, access to OpenClinica is IP-restricted and each clinical site can 

access only to the data for their own patients. In compliance with the institutional ethics 

committee and patient data privacy regulations, only a subset of the clinical data is made 

available to all consortium scientists through OncoTrack DB. 

 

OncoTrack DB: sample indexed content management 

The Oncotrack DB is software based on DIPSBC (data integration platform for systems biology 

collaborations), further developed by Alacris Theranostics and adapted to the specific needs of 

the OncoTrack project8. It is best described as a “Sample Indexed” Content Management 

System (CMS). It supports the typical features of a CMS to store, version control and manage 

collections of files and also enables project management, dissemination and progress tracking 

as well as allowing multiple channels for data access (eg. web interface, RESTful API). File 

formats were developed to store the results of the different laboratory analyses including the 

NGS based genome and transcriptome analysis, the ex vivo drug response experiments and the 

molecular characterisation of tumour samples. For each experimental data type, a unique 

upload interface was deployed to handle specific requirements with regard to data production 

frequency, volume and format as well as transfer method (i.e. web interface, RESTful API). 

Additionally, the OncoTrack DB indexes each of these data files with unique sample 

identifiers, so that each file can easily be filtered to locate and sort all data by cohort, 

experimental platform or patient. Throughout this work, we have adopted generally accepted 

data standards for ‘omics, clinical data etc. where applicable, inter alia CDISC compliant 

terminology for clinical data using Study Data Tabulation Model (SDTM), high-throughput 

sequencing data standards (e.g. FASTQ, BAM), gene sequence variations data format (VCF) 

or Systems Biology Markup Language (SBML) for computational models. In addition, data 

was loaded into a relational database and mapped to respective reference standards (e.g. 

Ensembl, UniProt, miRBase) to allow comparability and ensure compatibility. This allowed 

for more advanced data access and querying of available data sets. 

 

 

 

 

tranSMART: knowledge management data warehouse 

https://www.openclinica.com/
https://github.com/OpenClinica/OpenClinica
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To make the data collected in OpenClinica and the OncoTrack DB accessible to the entire 

consortium in a systematic way, the tranSMART knowledge management platform was used. 

tranSMART is an open-source data warehouse designed to store data from clinical trials, as 

well as data from pre-clinical research, so that these can be interrogated together in translational 

research projects. tranSMART is a web-based system, designed for use by multiple users, 

across organizations. Prior to uploading data into tranSMART, a curation step (to adapt formats 

and define the data tree) needs to be performed. The data pre-processing is handled during this 

curation phase and ensures that the end-user is presented with data sets upon which valid 

hypotheses can be based. To ensure data integrity, it is recommended that the pre-processing 

and uploading be restricted to a limited group of data curators, working with uniform ETL 

scripts (https://github.com/transmart/tranSMART-ETL). 

 

The data were organised in 3 core collections: 1) the observational clinical cohorts, 2) the drug 

response data from the cell-line models and 3) the drug response data from the xenograft 

models (see Fig. 2). The high dimensional data from the molecular analyses were linked to 

these collections so that users could browse and analyse: 

Variants among germline, primary and metastatic tumour material 

Confirmatory genomic analyses of xenograft and cell cultures 

Quantification of RNA transcripts from clinical and preclinical samples 

Quantification of small non-coding RNA (miRNA) 

Analysis of DNA Methylation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/transmart/tranSMART-ETL
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
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Fig. 2 
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The OncoTrack dataset structure. a The complex OncoTrack data hierarchy with OMICS 

datasets directly generated from patient material and datasets generated from patient derived 

pre-clinical in vivo, in vitro and in silico models. b Due to constraints in tranSMART (v16.1) 

unable to represent this hierarchical use of samples, data has been organised as a series of 

different independent collections. One collection for data derived directly from patient samples 

and other collections for data derived from the pre-clinical models. c A solution we provided 

with linkage back to human subject and a tool to automatically map data using this linkage 

 

The implementations of the functions reported in this manuscript have been integrated into the 

tranSMART main release, starting with version 16.2 

(https://wiki.transmartfoundation.org/pages/viewpage.action?pageId=10126184). The code 

can be accessed under: 

https://github.com/transmart/transmartApp and https://github.com/transmart/SmartR 

The documentation can be found at: https://transmart-app.readthedocs.io/en/latest/ 

A description of and link to a public demonstration version of the tranSMART instance can be 

found at https://wgu.pages.uni.lu/etriks-oncotrack/ 

 

Dynamic dataset linking 

The Oncotrack consortium based its approach to biomarker discovery on the innovative 

experimental design of creating collections of patient derived pre-clinical models. Tumour 

tissue collected during surgery from both the primary and metastatic tumours was used to create 

in vitro 3D-cell line models and xenograft in vivo models that could be linked back to the 

original patient. Cell lines and xenografts were used to study the response to a standard panel 

of established and experimental colon cancer drugs. The combination of deep molecular 

characterization of the tumours and their associated models with data on drug response 

provides the scientist with the necessary information for identification of candidate biomarkers 

for prediction of response to treatment. 

 

Data generated in the OncoTrack study is organised so that each sample can be linked back to 

the patient from whose tissue it was generated, as shown in Fig. 2a. 

 

The primary data level is the human cohort, with the primary entity being the subject. Patient 

tissue samples collected from subjects are profiled using omics and NGS technologies creating 

datasets directly attributable to the subject. A second data level is generated from the three 

disease modelling platforms used by OncoTrack: xenograft based in vivo models, 3D cell line 

based in vitro models (‘biological models’) and cell simulation based in silico models. Each of 

these is used to explore the tumour samples in different experiments such as response to 

standard clinical or novel experimental therapies. The biological models are then profiled using 

NGS and omics analysis technology, generating their own dataset and variants. The primary 

entity of this data is the model used in the experiment (e.g. cell line) with a lineage to the 

original patient. This two level lineage hierarchy of the datasets is shown conceptually in 

Fig. 2a. 

https://wiki.transmartfoundation.org/pages/viewpage.action?pageId=10126184
https://github.com/transmart/transmartApp
https://github.com/transmart/SmartR
https://transmart-app.readthedocs.io/en/latest/
https://wgu.pages.uni.lu/etriks-oncotrack/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
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This approach contrasts with the data model of tranSMART that has (by design) been 

developed with constraints regarding data organization. These constraints are required in order 

to achieve the required interactions of a flexible data model to a suite of analysis tools. These 

constraints mean that when modelled in tranSMART the data has to be modelled as 4 

independent data sets (Fig. 2b) or coerced to a structure resembling Fig. 2a but at the loss of 

being able to use the analysis and visualisation tools. 

 

Our objective was to create a mechanism where 1) data sets could be analysed 

independently and 2) we were able to respect the lineage of the samples to enable integrated 

analysis between the different levels in the hierarchy in the dataset. Our solution, shown in 

Fig. 2c is to maintain the basic tranSMART structure shown in Fig. 2b, augmented with 

additional metadata about lineage, mapping all level two datasets to their “parent” in the cohort 

dataset. 

 

Additionally, we developed PatientMapper, a plugin-tool for tranSMART designed to integrate 

data sets from different levels of the hierarchy referring to these mapped lineage relationship 

metadata. When applied across datasets with the lineage mapping, Patient Mapper uses the 

back-links to correctly integrate and reshape the data to be compatible with the tranSMART 

analytics suite. 

 

Data curation for dynamic data linking 

To support dynamic data-linking among datasets, we developed an enhanced curation process 

to create a data model that includes lineage relationships between different entities. To achieve 

this, we developed a new mapping logic, in which the parent-child relationships are kept for 

all levels of datasets to the patient from which the samples/derived model are derived (see 

Fig. 2c). For example: a patient is a parent of n patient samples. Those samples can again be a 

parent of m in vitro models (like e.g. xenografts or xenograft treatment groups). Those in turn 

can be parents of p samples used for ‘omics measurements, or even of ‘child’ in vitro models, 

etc.) 

 

In tranSMART, variables are represented in a tree structure (i2b2 tree, see Fig. 3 and see also 

Additional file 1)9. The design of the data tree structure should organise the data to allow easy 

exploration of datasets. In line with the above considerations, in the OncoTrack-tranSMART 

integration, we separated different data levels and data types into separate study-trees to better 

organise the different categories (clinical data and lab data). Under the Clinical Data tree, 

general subject information (e.g. Clinical site, Cohort, etc.) of the participating subject are 

stored. The Lab Data stores data generated in the lab (e.g. Treatment Data, OMICS Data). In 

each subtree under the “Treatment Data” and the “OMICS Data”, the subject/sample 

information as well as the interrelationships to other subtrees are organized in the 

“Characteristics”, and the corresponding measured data are stored within the subtree labelled 

with the data type (e.g. Xenografts, DNA_Methylation, etc.) 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#MOESM1
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Fig. 3 

 
Integration of OncoTrack data into tranSMART: (1) Left panel: Overall data representation in 

the TranSMART data tree. Right panel: easy customized cohort building with drag-and-drop. 

(2) Cascaded querying with cohort linking/selection tool PatientMapper. (3) Generating 
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summary statistics of a miRNA of choice by dragging the miRNA-Seq node to the right panel 

and providing miRNA ID using the HiDome plugin. (4) Performing miRNA-ome wide 

heatmap analysis between the two sub-cohorts (here responder vs. non-responder for a selected 

drug treatment) using SmartR workflows. 

 

Data curation and transformation are a prerequisite for the implementation of the data model 

described above. These steps are sometimes time consuming and require detailed knowledge 

regarding the necessary pre-processing of each data type as well as familiarity with 

tranSMART ETL requirements and scripting skills. Within the work reported in this paper, 

however, the curation need only be performed once and periodic updates (while new data of 

the same data type are generated) can be done automatically with pipelines developed during 

the manual curation. Data contributed by the different partners contributing to OncoTrack were 

collected centrally in OncoTrack DB. To avoid the risk of variability in the process, curation 

and transformation were performed centrally using one uniform set of ETL scripts. Details of 

each curation step are described in the Additional file 1. 

 

Dynamic cross-layer data link tool (PatientMapper) 

One typical query/analysis that requires the above-mentioned data model could be: what are 

the differences between xenograft models that respond to a certain drug and those that do not 

respond to the same drug: how do their parent samples differ in transcriptome and/or 

epigenome? To enable users to easily explore such a data model with dynamic cross-layer data, 

we have developed a user-friendly data linking tool (PatientMapper. see Fig. 3 (2)) that allows 

users to easily link sub-cohorts they have built on any level of data to datasets in other levels 

for the corresponding parent/children sample/subjects. This tool is integrated into tranSMART 

and updates cohort selection automatically based on the linking parameters selected by the 

user. From this point on, the other analysis and exploration of the updated cohorts can be 

performed within the same platform. This tool is not limited to mapping sample level data to 

patient level data but can be used to map data across any levels as long as they share a common 

lineage. 

 

Results visualization 

High Dimensional and Omics Exploration (HiDome) is a novel functionality for tranSMART 

that was developed through eTRIKS Labs10. It extends the platform’s core capabilities with 

regard to handling omics data. HiDome allows the visualization of individual components of 

these data sets, for example the read count distribution for a given miRNA (see panel 3 in 

Fig. 3). It also enables creation of cohorts based on omics data set components, for instance 

comparing patients with a high versus a low read count for a specific miRNA. Details about 

the development of HiDome are described in a separate paper11. 

SmartR is another new functionality for tranSMART that was also developed through eTRIKS 

Labs 12. This functional module enables the user of tranSMART to perform interactive visual 

analytics for translational research data, including both low-dimensional clinical/phenotypic 

data and high-dimensional OMICS data (see panel 4 in Fig. 3). 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#MOESM1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
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8.2.3 Results: Oncotrack TranSMART 

 

The current Oncotrack TranSMART deployed to the consortium is based on the eTRIKS 

distribution (eTRIKS V3) of tranSMART 16.1. A summary of data that have been modelled, 

curated and loaded in the OncoTrack tranSMART server is shown in Fig. 4. 

 

Fig. 4 

 
 

An overview of OncoTrack data that have been modelled, curated and loaded in the OncoTrack 

tranSMART Server 

 
Case study 

 

To illustrate how the OncoTrack TranSMART can facilitate the exploration and analysis of 

data, we present here the use case already introduced in the discussion of the PatientMapper 

(see above). We would like to emphasise that this paper is not meant to focus on any specific 

scientific questions within the OncoTrack project, which have been reported in a separate paper 
13, but rather to demonstrate the advantage of the tranSMART platform in solving data 

integration problems in general. For this reason, the marker annotations are blanked out. 

The use case: For two xenograft groups, one whose tumours respond to treatment with Afatinib, 

the other one whose tumours are resistant, what biomarkers (e.g. miRNA) are different in their 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig4
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parent patient tumor samples? And how to check whether a marker of interest is differentially 

presented? 

 

The steps: Researchers who use the OncoTrack-tranSMART can achieve this goal easily by 

first building the two cohorts (xenografts Afatinib responders vs xenografts Afatinib non-

responders) by dragging the Afatinib data-node and treatment response TC values (with filters, 

here < 30 and > 100) from the data tree into cohort selection (See Fig. 3 (1) for details). In order 

to get the miRNA data of the corresponding source patient, users can link the cohorts that were 

built using the xenograft level data to patient level data (here: miRNA sequencing data) using 

the GUI tool PatientMapper (Fig. 3 (2)) that will automatically handle the many-to-one 

relationship across the different data layers. In this example, the patient level miRNA 

expression profile (from miRNA-Seq) is linked to the xenograft level treatment response data 

by simply dragging-and-dropping their Parent Patient ID branch on the i2b2 tree to the 

PatientMapper tool. 

 

With this new cohort after data mapping, researchers can easily check and visualize the 

corresponding miRNA sequencing data between the two sub-cohorts via the Summary 

Statistics function in tranSMART, by dragging the miRNA sequencing data node into it (See 

Fig. 3 (3)). 

 

Researchers can extend the same steps to analyze the differences across the complete miRNA 

data set, using a few mouse-clicks to run the SmartR workflow (Fig. 3 (4)) to explore and 

identify differential biomarkers between the responders and non-responders. In all these steps, 

data mapping, linking and preparation are handled automatically by the OncoTrack-

tranSMART integration platform. Therefore, researchers can focus directly on the scientific 

questions, without spending any effort on processing the data and data-integration, which is 

otherwise a burden and the most time-consuming part of translational research data analysis. 

8.2.4 Discussion 

Recent reviews have summarized many of the existing computing and analytical software 

packages designed to ease integrated analysis of ‘omics and/or clinical data14 15 16. Those 

platforms are either repositories with an existing infrastructure or solutions requiring 

deployment. The advantage of the first type of solutions is their out-of-the-box usability, but 

this sacrifices the flexibility of configuration and toolset management. This type is represented 

by technologies like STRIDE17, iDASH18, caGRID and its follow up, TRIAD19 20 or BDDS 

Center21. Many platforms in this category focus on a specific disease, like cBioPortal22 or G-

DOC23 24 for cancer, or COPD Knowledge Base25 for pulmonary dysfunction. The second 

family of solutions requires deployment on the user’s infrastructure, often requiring substantial 

storage or High-Performance Computing (HPC) capabilities, but allows more flexibility in the 

setup and easier development. As a result of their configurable nature, such solutions provide 

support to ongoing projects as (part of) their data management platform to handle complex 

data. Examples in this group are BRISK26, tranSMART1 or Transmed27. Informative use cases 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2748-y#Fig3
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of such platforms are SHRINE28and DARiS29, where well-defined demands of clinical research 

projects drove the design and implementation of infrastructure supporting translational 

medicine. 

 

Besides these platforms, there are also many solutions that target web-based integrated analysis 

of ‘omics data. Some well-known examples are EuPathDB (a eukaryotic pathogen genomics 

database resource29), the DNA Microarray Inter-omics Analysis Platform30, Mayday SeaSight 

(combined analysis of deep sequencing and microarray data,31), GeneTrail2 (multi-omics 

enrichment analysis32), OmicsAnalyzer (a Cytoscape plug-in suite for modeling ‘omics data33), 

PathVisioRPC (visualise and analyse data on pathways34), 3Omics (analysis, integration and 

visualization of human transcriptomic, proteomic and metabolomic data35) and PaintOmics 

(joint visualization of transcriptomics and metabolomics data36). 

 

Among the above-mentioned solutions, tranSMART stands out as a community-driven, rapidly 

growing, web-based data and visual-analytics platform for clinical and translational research 
1 5. TranSMART is being used by many (> 100) organizations and consortia around the world 
2 3 4 5 15

 
37 38 39. It enables the integrated storage of translational data (clinical and ‘omics) by 

providing interlinks between different data-types and it allows researchers to interactively 

explore data as well as to develop, test and refine their hypotheses. These features are essential 

in order to support multi-party consortia like OncoTrack, that involve researchers with very 

diverse background working together on the datasets generated during the project. In the 

eTRIKS consortium, the platform has been further developed to incorporate more advanced, 

user-friendly and portable functionalities 39 40 41 42 43.  

 

This paper describes the approach used by eTRIKS to provide an interface between the data 

architecture in the OncoTrack consortium and tranSMART. We also highlight the development 

of a new plug-in for the tranSMART platform to support dynamic data-linking among different 

datasets and datatypes in tranSMART. 

 

The consortium model approach to research problems is becoming increasingly successful, as 

seen by the continuation of the European Innovative Medicines Initiative and the similar 

programs such as CPATH and the Accelerated Medicines Partnerships in the USA. There is 

increasing awareness among both funding agencies and the coordinators of large consortia, that 

data coordination and knowledge management capabilities are prerequisites for data to be 

integrated and used by all stakeholders in the collaboration and therefore constitute a key part 

of a project’s operational design. Developing a strong data coordination capability enables: 

Project Coordinators to understand the progress of data generation by different laboratories 

within the project, to help manage the scientific deliverables of a project and to identify in an 

early stage any data quality problems 

Clinical and Laboratory scientists, as by interacting with a knowledge management platform 

they have access to all of the data from across the consortium, not just the sections they 

generated themselves 
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Data Scientists, Bioinformaticians and Statisticians to have access to clean, curated and linked 

datasets that represent the master version of data, saving them time in performing their own 

data preparation 

 

While there are significant advantages to the investment in such a capability it should be 

recognised that there is no gold standard for data and knowledge management. As we have 

shown here, 3 key components (Open Clinica, OncoTrack DB, tranSMART) are used to 

collect, organise, publish and support analysis of the data generated in the OncoTrack 

consortium. While all of the software is Open Source and does not require a license for its 

implementation, there are operational costs in both the underlying IT hardware and the multi-

disciplinary skill sets of people acting as data coordinator. 

 

8.2.5 Conclusions 

 

The authors suggest that results generated from exploratory analysis as described here provide 

a useful approach to hypothesis generation, but that such results should be scrutinized by a 

qualified statistician or bioinformatician prior to publication. 

During the course of OncoTrack, we were confronted by the reality of the maxim “Scientific 

research and data production in life sciences move faster than development of the technical 

infrastructure”. We developed patient derived pre-clinical models on a large scale and amassed 

large data sets from the analysis both of these models as well as the biological characteristics 

of the clinical samples. Consequently, new technology had to be developed to support the 

dynamic data linking across different datasets to enable the users to formulate the queries and 

analyses they wanted to explore. The approach described here is generally applicable to data 

collected in typical translational medicine research projects. 
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8.3.1 Introduction 

The European Translational Information and Knowledge Management Services 

(eTRIKS, https://www.etriks.org/, 2017) is tasked with providing tools and services to support 

data management and analysis for >60 diverse biomedical research projects which have been 

funded by the Innovative Medicines Initiative (IMI). As Europe’s largest public-private 

partnership, IMI funds projects ranging from molecular and systems biology to clinical trials 

and full translational research projects. The community translational research system under use 

is tranSMART (Athey et al., 2013; Dunn et al., 2017), first developed by the pharma industry, 

and then gifted to a global translational research development community. The tranSMART 

system has undergone extensive development extended by its own community and the eTRIKS 

project, which has focused on an implementation that serves IMI projects users based in the 

European Union (EU). The flexibility and capability of tranSMART is well presented in a 

recent paper showing the availability of workflows within a sandbox environment 

(Satagopam et al., 2016). tranSMART serves as the central knowledge management system for 

eTRIKS, while other tools and complimentary services applicable to the data value chain, such 

as data harmonization, sharing, analysis, visualization and preservation, have been developed. 

To expedite medical breakthroughs the sharing of clinical research data is vital owing to 

legislative incentives and increased public pressure, many clinical trial registries are expanding 

their remit to share not only basic summary trial registration data but also results. Wider data 

sharing is one way of tackling reporting bias by increasing visibility of successful studies as 

well as failed ones. Additionally, data standards play a pivotal role in tackling the omnipresent 

problem of reproducibility. Begley et al. reproduced 53 experiments from landmark 

publications to find 47 out of 53 could not be replicated; a very worrying trend for preclinical 

studies that are used as the scientific basis for target identification for new drug development 

(Begley and Ellis, 2012). 

 

The Data FAIRport initiative in 2014 prescribed a set of guiding principles known as FAIR: 

Findable, Accessible, Interoperable, Reusable which should be applied where data is deemed 

https://www.etriks.org/,%202017
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scientifically valuable (Wilkinson et al., 2016). Those principles have gained official 

recognition from G20, NIH and the Directorate General for Research and Innovation of the 

European Commission. The consistent application of common semantics and data structures, 

as outlined within data standards, is a key factor to ensure interoperability and reusability of 

data. The eTRIKS Data Standards Work Package created a Standards Starter Pack 

(https://doi.org/10.5281/zenodo.50398/, 2016), which outlines the FAIR principles and 

recommendations for the main clinical and genomic standards as well as supporting 

vocabularies and minimum information guidelines that should be applied in the entire 

translational research landscape. eTRIKS has also produced the IMI Data catalogue which 

centralizes metadata of ongoing and past IMI projects. It is part of the service that eTRIKS 

provides in its key knowledge management performance with a focus on the findability of 

project level study description metadata. Furthermore, this well received initiative facilitates 

broader sharing and accessibility of data (http://datacatalog.elixir-luxembourg.org/ckan/, 

2017). 

 

For clinical research data, The Clinical Data Interchange Standards Consortium 

(CDISC, https://www.cdisc.org/, 2018) data standards have been implemented in over 90 

countries, and are now mandated by Food and Drug Administration of the United States (FDA, 

2014) and Pharmaceuticals and Medical Devices Agenda (PMDA) in Japan 

(https://www.pmda.go.jp/files/000206449.pdf, 2018) in order to increase the uptake of data 

standards, which, when applied, contribute to higher data quality. The lack of implementing 

standards will render datasets from different cohorts inadequate when integrating with 

complementary research data for meta-analyses (Elefsinioti et al., 2016). A recent paper by the 

American College of Medical Genetics and Genomics (Acmg, 2017) discussed the importance 

of using the information from one patient cohort to benefit other patients. The ACMG’s 

framework for data sharing will work best if standards are implemented within the framework, 

as within tranSMART, and datasets are gathered by utilizing those standards from the 

beginning of the research, as is also recommended by CDISC. 

8.3.2 Implementation 

The eTRIKS Standard Master Tree is based on the standards for clinical data representation 

developed by CDISC, mainly the Study Data Tabulation Model (SDTM) standard. The 

proposal of eTRIKS was to create a hierarchical navigation tree in which the raw data, collected 

at the multiple cohorts, should be promptly mapped to the elements of this tree so that data are 

loaded automatically with the correct topology into tranSMART i2b2 (Informatics for 

Integrating Biology and the Bedside) framework. The requirement for this is that all the data 

collected from a patient will be organized and formatted using the SDTM model. SDTM 

modeling increases the ability to compare information among systems and/or organizations, 

whilst also decreasing the time to initiate a new research study. The use of these data standards 

improves the data quality, their interoperability and their management, which allows easier, 

faster and more reliable data aggregation. 

 

https://doi.org/10.5281/zenodo.50398/
http://datacatalog.elixir-luxembourg.org/ckan/,%202017
http://datacatalog.elixir-luxembourg.org/ckan/,%202017
https://www.cdisc.org/,%202018
https://www.pmda.go.jp/files/000206449.pdf,%202018
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The eTRIKS Standard Master Tree presents the clinical data within tranSMART i2b2. eTRIKS 

has radically updated the original tranSMART engine that sorts and presents the clinical data 

within the system. Users can choose to map their clinical data content to a favorite terminology 

prior to the SDTM modelling using global standards such as OMICS, NCI 

(https://www.cancer.gov/digital-standards, 2017) or LOINC (https://loinc.org/, 2017), as long 

as the SDTM variable names as maintained. Further, the clinical data is mapped to a ‘clinical 

mapping file’, which requires a good working knowledge of the CDISC foundational standards, 

in order to represent the SDTM structure of the clinical data correctly in the hierarchy of the 

tranSMART i2b2 repository (Abend et al., 2009). 

 

In practice if one thinks about the outcome of a ‘glucose test’, this test may be named ‘sugar 

test’ or ‘glucose test’ in different differing cohorts, which may be well understood by experts 

but not a machine as the same concept. The use of standard name ‘Glucose Tolerance Test’ 

(NCBI’s, MeSH Unique ID: D005951) would avoid any confusion or wrong interpretation and 

enable data query across cohorts. Further to this, considering that the metabolite ‘glucose’ 

could be measured in different samples (e.g. blood, urine), the test results could be reported in 

different units (mg/dl or mmol/l) and/or the test could be performed at different periods of the 

time (screening, visit 1, visit 2, etc.), error prone aspects during the data analysis. If the problem 

is proposed, ‘How to standardize the manner by which this information should be organized 

and formatted for effective and precise cohorts comparisons?’ One answer should be: ‘Use a 

Standard Master Ontology Tree’ or in this case, the eTRIKS Standard Master Tree. The 

application of this tool coupled with a good application of controlled vocabularies will increase 

greatly the Reusability and Interoperability Principles mentioned above. 

 

In the ‘Glucose Tolerance Test’ example, upon mapping to the tranSMART Standard Master 

Tree, the outcome of this test would already be represented as displayed in Figure 1A below. 

The test result is reported in this example by means of 14 variables (columns A-N) for the 

subject CDISC01.100008 (column C). Note that column G collects one variable called 

LBTEST (Lab Test Examination Name), which is filled with the standard value ‘Glucose’ and 

another variable LBSPEC (Specimen Type) is used to distinguish ‘BLOOD’ from ‘URINE’ 

samples. In terms of readout values, the variable LBORRES (Result or Finding in Original 

Units) records the original values as collected reported units in LBORRESU (Original Units) 

the unit itself (e.g. mg/dl). The example shows results converted to numeric type and this 

reported value to a standard unit, which is achieved by using the pair variables LBSTRESN 

(Numeric Result/Finding in Standard Units) and LBSTRESU (Standard Units), for values and 

units (e.g. mmol/l), respectively. The SDTM Implementation Guide provides a comprehensive 

description including four sessions: 1—Overview of topics for specific general observation 

class associated with specific domains, 2—Specification for table of variables, 3—Rules for 

correct implementation of standards and 4—Examples.  

 

 

 

https://www.cancer.gov/digital-standards,%202017
https://loinc.org/,%202017
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Fig. 1. 

 
 

Content representation of the eTRIKS Master Tree Package. (A) SDTM data file for one patient 

(USUBJID) for the LB domain. (B) SMOT_Lite definition session for the LB domain. (C) 

Hierarchical (i2b2) tree created for the LB domain and displayed in the tranSMART web app 

 

To avoid the all too common pitfalls of redundant data eTRIKS developed the Standard Master 

Tree, using the comprehensive SDTM domain structure, to support and give structure and 

context to the data so it can be easily identified. The Standard Master Tree follows a basic and 

easy-to-understand logic, which was built upon the premise of tranSMART rules for data 

loading. This means that multiple data collected for one patient for the same domain (e.g. 

Laboratory Test Results—LB) should be distinguished based on Data Labels. This way, for 

the LB domain, results of ‘Glucose’ and ‘Creatinine’ tests for example, could be loaded in the 

same run. Moreover, multiple results for the same test should also be distinguished based of 

the Visit Names. Respecting these two basic rules, any results from any sort of laboratory tests 

and even results for any other domains, can be easily represented in tranSMART via the 

Standard Master Tree. 

 

8.3.3 Features 

The eTRIKS Standard Master Tree model consists of a package of three main components: (i) 

a CDISC clinical dataset reported as define.xml metadata and converted in .txt tabulate files 

composing of 16 SDTM domains represented as review data as collected for 4 fictitious 

subjects (Fig. 1A); (ii) the tranSMART standard master ontology tree as TM SMOT-
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SDTM_lite.txt definition file, where all the information concerned about the correct positioning 

of the SDTM variables can be found (Fig. 1B); and the (iii) Mapper script where users can map 

their data files to the TM SMOT-SDTM_Lite definition, avoiding manual work. The script 

reads a target directory containing the input SDTM files and maps all the collected variables 

against the SMOT-SDMT_Lite.txt master tree file mentioned above. This is achieved with a 

single command line: ‘php mapper.php SMOT_Lite.txt CDISC01_ClinicalData’ (further 

details are explained on the package’s README file). Figure 1A depicts an example for the 

Glucose test of one such subject. Figure 1Bdepicts part of the TM SMOT-SDTM_Lite file 

where definitions for the domain LB is displayed (Note the seven columns required for the 

annotation of each of the SDTM variables used in this domain). This information can be found 

easily on the SDTM implementation guide as should be adopted by the data curators. 

Finally, Figure 1Cdisplays the graphical hierarchy tree, known as tranSMART i2b2 tree, where 

the loaded data can be further queried and used to create comparison subsets on the 

tranSMART i2b2 web app, these can be visualized in a sandbox implementation available 

at http://public.etriks.org/transmart/datasetExplorer under the eTRIKS—Master Tree branch. 

 

The strategy for clinical research data standards representation proposed above offers a readily 

available method to integrate multiple translational research datasets while meeting the 

Interoperability and Reusability aspects of the FAIR principles. Once the data is within the 

eTRIKS Standard Master Tree, it can then take advantage of the tranSMART environment, 

where it will receive a unique study and server specific identifier and the metadata can be given 

greater and essential specificity. With an effective tranSMART search tool where multiple 

datasets and/or studies can be pooled and queried, coupled with an entry within the eTRIKS 

data catalogue the data has undergone FAIR-ification to a satisfactory degree. Now the data is 

Findable and also Accessible, and it can begin its hopefully long life adding scientific value to 

any number of future studies or aggregated data comparisons. 

8.3.4 Conclusions 

The tranSMART Standard Master Tree presented here adds to other efforts to make other 

software data interoperable with tranSMART. Projects such as ‘ODM to i2b2’ converts data 

stored in XML/ODM based systems such as OpenClinica and REDCap into i2b2 format 

(https://github.com/CTMM-TraIT/trait_odm_to_i2b2, 2018); and ‘REDCap2SDTM’ converts 

electronic data capture system data to SDTM (Yamamoto et al., 2017). Taken together, this 

software could benefit from the Master Tree concept in order to standardize the manner that 

SDTM studies should appear within a tranSMART navigation tree to users. 

 

If the tools and processes above are adopted in the scope of the NIH funded projects, it will 

contribute greatly to creating an overseas bridge for data sharing initiatives with the 

EU/EFPIA-funded (IMI) translational medicine research projects, of which over 60 are being 

supported by the eTRIKS project. While not all of the eTRIKS supported projects have 

implemented the tranSMART Standards Master Tree they have all received the appropriate 

guidance and advice from eTRIKS experts or as laid out in the eTRIKS standards starter pack. 

http://public.etriks.org/transmart/datasetExplorer
https://github.com/CTMM-TraIT/trait_odm_to_i2b2
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Tremendous curation efforts were necessary to guarantee that IMI data was collected in good 

quality, once that, frequently, the big challenge for translational research projects lies on the 

quality of the data itself, not only its metadata. The adoption of the technologies and standards 

developed and presented in this paper will support a significant step towards a position where 

IMI data can be shared, and the findings reproduced to benefit the health care research 

community, allowing a standardized representation of SDTM data across multiple tranSMART 

servers. The eTRIKS Standard Master Tree package can be downloaded 

at https://doi.org/10.5281/zenodo.1009098. 

  

https://doi.org/10.5281/zenodo.1009098
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Chapter 9: Meditations on the Nature of Open 

Source Software  

Jay Bergeron 

9.1 Open Source Software and Scientific Research 

Although robust commercial solutions existed to support molecular profiling, particularly gene 

expression, in the mid to late 2000’s, these solutions did not comprehensively support 

corresponding low dimensional clinical datasets including demographics, labs, study endpoints 

and assessments. Johnson and Johnson (J&J) created the tranSMART platform, as described 

in chapter six, in order to integrate these corresponding low dimensional clinical and high 

dimensional biomarker patient datasets. Developing a system such as tranSMART is an 

enormous undertaking requiring substantial investment in funding and personnel time. 

Although J&J likely viewed tranSMART as a competitive advantage, the cost to develop and 

release subsequent versions of the software caused J&J’s leadership to consider open licensing 

the product to, hopefully, take advantage of community investment (per my remembrance of a 

conversation with Sandor Szalma, a leader in tranSMART’s development). As a first step, 

tranSMART was used to manage the translational data of the IMI U-BIOPRED consortium as 

described in chapter one. Based on the U-BIOPRED success, J&J released tranSMART under 

the GNU Public License version 3 (GPLv3) leading to commissioning of the eTRIKS 

consortium and use by other scientific programs. Notable programs using tranSMART include 

the Translational IT (TraIT) public private partnership based in the Netherlands and Zachary 

Cohane’s group at the Harvard Medical School (this team developed Informatics for 

Integrating Benchtop to the Bedside (I2B2), the foundational application upon which 

tranSMART was built). Paul Avillach joined the Cohane group at roughly the time tranSMART 

was licensed as open source. Paul’s team has consistently developed and utilized the Harvard 

tranSMART version to great advantage for many largescale disease studies, leveraging the best 

complementary capabilities of both I2B2 and tranSMART. 

 

In anticipation of the open source tranSMART release, several Pharmaceutical and scientific 

informatics companies, following a pattern associated with many highly successful open source 

systems, formed the tranSMART Foundation (tF) in order to guide and harmonize tranSMART 

feature development and promote the use of tranSMART.  

 

However, the initial GPLv3 release of tranSMART was dependent on the Oracle relational 

database management system (RDBMS), a commercial product. As such, Oracle licenses were 

required to use the initial tranSMART public release and the Oracle RDBMS could not be 

modified or developed outside of the Oracle product roadmap. As academic groups generally 

preferred to use a fully open source stack to reduce cost and provide code visibility eTRIKS 

software developers, working with the University of Michigan Computational Biology 
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department, created a tranSMART version that could be used with either the Oracle or the open 

source RDBMS PostgreSQL. This version was co-released by eTRIKS and the tF, becoming 

the base implementation to power many translational research projects and consortia. 

 

Subsequent releases attempted to imbue tranSMART with advanced capabilities such as cross-

study analysis and robust longitudinal/temporal support, integrating these capabilities 

developed in isolation by disparate teams. Based on highly successful open source projects 

such as Linux, Star Office, MySQL, the R statistical program, PostgreSQL and others, this 

model of feature enhancement was expected to be highly enabling. However, to a great extent 

these version integrations proved problematic to harmonize and typically failed to be widely 

adopted. Feature enhancement was, by contrast, usually implemented by creative study 

configurations conceived by expert data curators or by custom enhancements specific to 

individual projects or development teams. The result being version segregation with the pursuit 

of a single harmonized feature-consolidated tranSMART codebase became economically 

infeasible. 

 

As to why Linux, Star Office and many other open source systems were strategically enhanced 

for community-wide adoption and utilization while tranSMART suffered from version 

fragmentation is an exceedingly important question. Although there are multiple contributing 

factors, the most straight-forward compelling explanation lies in client-based variability of 

seemingly shared requirements. For example, cross study analysis and longitudinal study 

support appear to be reasonably well understood as general concepts. However, the high degree 

of study to study dataset variability coupled with the correspondingly variable and complex 

data use and analysis patterns greatly complicates the detailed implementation of such features. 

A cross-study analysis or longitudinal implementation that satisfies a specific research team 

may be wholly inadequate for other teams, although each team of researchers describe a 

consistent general functionality need. The dissonance between high level feature description 

and explicit user implementation requirements was consistently observed in practice. 

 

This dissonance was also observed for even apparent simplistic custom features. The company 

for which I work created a tranSMART enhancement that allowed company researchers to 

create and utilize a large collection of genome wide association (GWA) summary statistics. 

This collection eventually comprised tens of billions of records. Now migrated to another 

system as part of an evolving information strategy, the GWA collection resided on tranSMART 

effectively and cost efficiently for seven years of consistent use and expansion. Other groups 

attempted to adopt this feature and failed due to variable detailed requirements and tolerance 

for investing in updating their own company tranSMART systems. GWA summary statistics 

can be described by a straight-forward data structure relating individual genetic variants to 

computed summary values (i.e. a grid of values with the number of records equivalent to 

individual variants tested for a specific phenotype projected across a set of ~50 summary 

statistics, the number of records will grow substantially with each phenotype tested but the data 

relationship remains rather simple). However, varying data quality processes, raw data 
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integration requirements, dominant query patterns (intra vs. cross dataset) and a variety of other 

factors important to individual work groups seriously complicated what was expected to be an 

easily distributable feature set. 

 

In a more cogent example, two academic groups implemented two disparate integrations of 

tranSMART and the open source image utility XNAT to enable queries of low dimensional 

clinical data with corresponding medical images. Each implementation was presented side by 

side at the October 2015 tranSMART Foundation community meeting (see also Chapter 8 

references). The apparent redundancy of effort was logically justified through detail level 

distinctions in the types of queries needed by each client group. 

  

Building Linux or Star Office is (really, really) difficult. However, the development process is 

much facilitated by modeling these open source systems on well-established commercial 

counterparts with thriving customer communities. With clearly understood use patterns 

coupled with an underserved user population which, for example, may not be able to afford, or 

may need to customize, the commercial product there emerges an economic incentive to create 

the open source substitute. In highly successful cases such as Star Office and PostgreSQL the 

open source competitor may eventually encroach on the market of the commercial incumbent. 

 

If existing applications, having clearly established use patterns, do not exist to guide the open 

source development, expect risks with respect to open source solution development and 

adoption and plan pertinent risk avoidance or mitigation measures. 

 

I can attest that the tranSMART community (eTRIKS, TraIT, Harvard, tF and beyond) was 

populated by astoundingly talented, intelligent, educated, experienced and enthusiastic people 

who genuinely strived to work together to build impactful software for translational research. 

The success in distributing the base tranSMART platform and the difficulty in consolidating 

the various functionally “decorated” tranSMART flavors into successful harmonized releases 

led to a gamut of community reactions from elation, solidarity, intellectual debate and lively 

disagreement. In the end, a community-developed core system which is customized by/for 

specific client communities is a productive model for solution deployment. Granted this model 

diverges from that of efficient evolutionary integration associated with some of the most 

powerful, distributed and famous open source products. However, astute communities 

possessing self-awareness can achieve enviable results with community development models 

that diverge from the perceived ideal. Applying public-private funding in such circumstances 

(eTRIKS as an example) is a competent consideration for meeting public goals by accountable 

corporate and government officials. 

 

Given the high regard and broad use of open source systems within the scientific community, 

it is important for researchers to understand the basic concepts underlying open source 

economics given their likelihood of engaging open source software products and communities. 

It is likely that a utopian vision of altruistic developers building, through shear virtuous passion, 
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open solutions to rival commercial juggernauts is somewhat naïve. However, there is clearly 

demonstrable and important economic potential and positioning for open source software.  

 

Scientists may very well need to answer questions of the following nature. 

 

1. As a principal investigator, how do I determine whether a commercial or open source 

application is best for my laboratory, what factors and risks are pertinent beyond the 

basic comparison of existing capabilities and cost? 

 

2. As a government funding decision maker, is it proper or ethical to fund an open source 

development effort that may compete with commercial products? 

a. What conditions would contribute to an anti-competitive environment? 

b. Is there open source potential to simplify/optimize procedural compliance? 

c. Is there open source potential to anchor productive competitive marketplaces?   

 

3. As a software developer, is it in my customer’s best interest to provide a custom 

solution or is there benefit to contributing to and delivering an open source solution? 

What explicit factors should I assess to better understand the risks and benefits?   

 

I invite those wishing to explore these concepts more to read the full chapter, the content of 

which was originally accepted as a dissertation by the faculty at the Lally School of 

Management, Rensselaer Polytechnic Institute in April of 2013, six months following the 

launch of eTRIKS. To have a theoretical viewpoint of the nature of open source development 

is useful. To experience this nature unfold as a leader in a sizeable international open source 

endeavor, living the successes, challenges and disappointments, has been uniquely satisfying. 

Further exploration into this subject matter, which I continue to find profoundly fascinating, 

begins with this abstract.  

 

Motivations that give rise to voluntary participation by software developers in Open Source 

Software (OSS) projects have been well analyzed9 40 37 4. Socio-Psychological factors that 

include the potential for individual development and personal recognition, as well as the 

opportunity to contribute to self-selected high value efforts, have been promoted as drivers 

of OSS contribution. Substantial work has been conducted to relate architectural aspects 

of OSS, including the extent of design modularity and differentiated option value for 

modular components, with the free-rider tolerance associated with successful OSS 

initiatives9 6. However, empirical evidence to support the hypothesized relationship 

between architecture and OSS participation is limited. Moreover, the extent to which Socio-

Psychological factors promote OSS participation is difficult to quantify given substantial 

OSS investments by governments and commercial enterprises. Additionally, open source 

licensing models do not preclude business development activities such as commercial 

software extensions, consultancies and discretionary pricing models31 23. To extend the 

traditional dialog regarding OSS success, patterns of business implementation, and the 
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subsequent impact of such patterns on OSS end use, are considered. The high degree of 

imitation in the design of end user components that is apparent between OSS projects and 

corresponding pre-existing, often commercial, competitors cannot be ignored, nor can the 

impact of Information Protection policies that allow such imitation. Moreover, it is 

proposed that evolutionary development of new OSS features may coincide with OSS 

product suitability for an initial niche market that ultimately can expand to traditional 

market segments and challenge/supplant established commercial competitors. 

 

9.2 Impact of Business Patterns on Voluntary Production: Imitation and 

Open Source Software Success 

9.2.1 Introduction 

Computer software products (alternatively programs or applications) control the physical 

elements of a computer (i.e. hardware) such that these elements can be coordinated to perform 

valuable tasks for humans 10. Software products are comprised of instructions (source code) 

that conform to language contexts that can be interpreted by machine hardware. Software 

instructions must be written by a, typically human, developer having the requisite knowledge 

of the software language constructs as well and the goals and outcomes (i.e. software 

requirements) that future users plan to achieve by using the software 9 10. 

 

Computer programs are typically produced using a phased development approach referred to 

as the software product life cycle 31 23. The software product life cycle includes business 

analysis, product design, creation (build) and test/verification phases. Business analysis 

involves eliciting and documenting software requirements from future users 4 13 19. These 

requirements include the capabilities that the software must provide (functional requirements) 

as well as performance, security, regulatory and other necessary operational characteristics to 

which the software must conform (nonfunctional requirements). Given the results of the 

business analysis, technical staff will prepare the design of a future software product capable 

of meeting the documented software requirements. 

 

Design encompasses many elements, including the selection of hardware and network 

specifications, supporting software products such as operating and database management 

systems as well as programming language(s) 9 17. Software is often constructed in a modular 

fashion in which related data and operations are grouped together into logical subunits. Rules 

and methods (termed interfaces) that describe the nature of interactions between the subunits 

are designed using standardized modeling techniques 29 17 20. This functional decomposition of 

software programs into subunits allows for separation of responsibilities among the 

development team. Additionally, the isolation of software functions inherent in efficient 

modular design leads to advantages in maintaining and enhancing the software as program 

defects will be easier to identify and their correction both less laborious and less likely to result 
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in unintended consequences (such as the introduction of new defects due to unanticipated 

interactions within the code)29. Moreover, the design specification will include planning for 

interoperability or how the system will approach interactions, such as information exchange or 

the submission and receipt of instructions, with associated or dependent software products that 

may or may not be within the development team’s control 31 25. Application capabilities are 

generally exposed to other software using an application programming interface (API) that 

allows one application to use the capabilities of another without needing in depth knowledge 

of the design or code of the supplier application 10. As with internal application interfaces, APIs 

establish the rules and mechanisms for cross program interaction and have been likened to a 

contractual agreement 10 17.  Potential future expansion may be considered, and planned for in 

advance, as part the design phase and can include preparations for managing potential new 

requirements or scaling to meet anticipated increases in future demand (such as greater 

numbers of users or higher data volumes).   

 

The build phase encompasses the actual software development effort that produces a working 

application 31 23. The team of software developers creates and integrates the various modules 

that, together, deliver against the functional and nonfunctional requirements. The test or 

verification phase of the software lifecycle ensures that the software product actually conforms 

to the stated requirements. Typically, authorization of the test/verification phase is contingent 

upon a group of end users conducting testing and authorizing the product as fit for purpose 23 

13. 

 

The linear phased software lifecycle described above (sometimes referred to as a Waterfall 

approach) is a traditional model 23 8. There are a number of software lifecycle approaches, each 

having specific variations on techniques, including incremental models that divide the 

definition and delivery of software into smaller units of effort and versioning models that 

encompass long term development strategies. All life cycle approaches incorporate the basic 

activities of requirements analysis, design, build and verification 23 8. 

 

Software source code can be written, modified and extended by developers but, typically, 

cannot be executed on hardware. Source code is written in languages that are interpretable by 

humans having the requisite skills in the use of the language 9 10. However, a transformed, or 

compiled, version of the source code can be executed on a machine but, in this form, is 

extremely difficult for developers to modify 9. In order to protect the intellectual property, 

commercial software applications are generally delivered as compiled code ready for execution 

while the source code is withheld. De-compilation of distributed compiled code (back to source 

code, should tools for de-compilation exist) is generally forbidden by software licensing 

agreements 9.  

 

Open Source Software (OSS) is the name applied to computer applications that are licensed for 

unrestricted distribution and use 9 10 31. More specifically, Open Source refers to open access to 

source code. OSS may be used per the discretion of the consumer and, if desired, modified by 
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consumers to extend the software's capabilities or to leverage the code base for alternative uses 
9. Certain OSS licenses, such as the original version of the GNU (Gnu’s Not Unix!) Public 

License (GPLv1) compel developers to freely distribute products derived from OSS under the 

same license. This enforced distribution licensing model is known as copyleft or viral licensing 
9. However, some OSS licenses, such as LGPL (Lesser GPL) impart property rights onto 

consumers who modify OSS allowing for commercial distribution of value-added application 

updates and derived products. Apache, the ubiquitous OSS web server, is distributed under 

such a “permissive” license as are all software products licensed under the prominent Berkley 

Software Distribution (BSD) 9. 

 

OSS products are generally perceived as being developed and maintained by a community of 

volunteers and freely distributed via public networks 31. This is the case with many high-profile 

OSS products, such as the Linux operating system and the Apache web server 10 31 23. The 

motivations for such mass volunteer efforts confounded economists although convincing 

explanations, including socio-psychological drivers of volunteer developers and system 

architecture-based enablers have emerged 30 31. These reasons for mass volunteer participation 

have tended to address the design/build/test phases of the software development life cycle 31. 

 

However, many OSS projects include commercial and government benefactors 9. Furthermore, 

OSS models do not preclude the prospect of financial reward for participants. The generally 

cited motivational aspects of OSS success will be discussed relative to sources of financial 

investment and opportunity of financial gain associated with these projects. The paper will 

discuss alternative drivers of OSS success predicated upon the business analysis phase of the 

software development life cycle. 

 

9.2.2 The Nature of OSS as a Public Good 

 

The economist Paul Samuelson formalized the concept of collective consumptive goods (i.e. 

public goods) as products that can be consumed by an individual without lessening the 

product's consumption by others 33 26. Public goods are characterized as both non-rival and non-

exclusive. As such, public goods are differentiated from individual fee for service offerings as 

well as member-based (club) services, both of which are exclusive offerings that can be limiting 

with respect to the number of customers that can be supported 10 39. Pragmatically, most public 

goods, such as public spaces, are likely to have limits in their capacity that may create situations 

of rivalry 39.  

 

Public goods provide governments with an alternative to fee for service-based allocations of 

civic offerings. The public good model allows governments to feasibly tax public services that 

can be used by anyone although such services may not be used by everyone 33 9. Samuelson 

also described the inherent inability to enforce equity of individual investment in public goods, 

later termed, and generally recognized as, the “Free-Rider” problem, such that individuals 

could, per Samuelson, “selfishly” conceal their true demand to take advantage of a wider 

community investment 33. Out of town persons using a town-funded public park, for which 
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they do not pay taxes, being a simple free rider example.  

 

The free rider problem complicates the definition of apparent public goods. The economist 

Ronald Coase, in a classic article popularly referred to as “Coase’s Lighthouse” 15, 

demonstrates these classification challenges. Lighthouses were commonly used as examples of 

public goods by economists who assumed fee for use schemes with regards to these structures 

would not be feasible. Consequently, government support was generally presumed to be a 

necessity for establishing lighthouses. With these assumptions, “Free-riding” shipping lines 

not subject to local taxation would be expected to take advantage of the presence of light 

houses. However, Coase presented substantial evidence that commercial sources, as opposed 

to government/public sources, dominated lighthouse funding. Moreover, such funding entities 

were able to develop business models (port “landing fees” for example) that charged individual 

shipping lines for their use of these navigational installments. Lighthouse builders were able to 

introduce an unexpected element of exclusivity with regards to the use of lighthouses that 

effectively limited free-riders to tolerable levels 15.     

 

OSS code may be downloaded and used by anyone with the requisite hardware and dependent 

software required to operate the OSS product and, as such, is non-exclusive by nature. OSS is 

generally also non-rival as there is no limitation on the number of people who can download 

and use the software (of course, distributed applications that use shared networks or hardware 

can be susceptible to increased use, note services below). Therefore, OSS licensed under 

permissive terms meets the definition of a public good, albeit a public good promoted by 

seemingly altruistic volunteerism rather than by tax allocation 9. 

 

On-line software services that are provided freely/openly via the internet, such as Wikipedia, 

also generally conform to the definition of a public good although clearly these services may 

be limited (i.e. rival) relative to the number of concurrent online users or volumes of data that 

can be supported 10. Although the sustainability of open internet services is worthy of study, 

this paper will focus on open code development and distribution inherent in OSS products 

rather than the delivery of open internet services. 

 

As potential public goods, OSS projects are expected to be susceptible to free riders given the 

facility and anonymity associated with software downloads. That successful OSS projects are 

able to tolerate free riders (and given the ease of replication and distribution of software, 

potentially enormous discrepancies between free-rider OSS users relative to volunteer OSS 

developers) is therefore economically intriguing and has driven substantial interest in the value 

propositions associated with OSS participation9 6. The potential of OSS, like the lighthouse, to 

benefit from non-obvious business models and elements deserves investigation.  

 

9.2.3 Motivations for Open Source Volunteers 

 

The motivations that drive OSS volunteers have been substantially analyzed 30 31. 

Social/psychological rewards have been proposed. Popularized by writers such as Dan Pink 30, 
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the prospect of working autonomously, the pursuit of technical mastery and the opportunity to 

be involved in goal drive communities that deliver value far greater than that achievable by 

isolated individuals are purported drivers for participation 30. Pink notes that developers who 

contribute to OSS projects typically have paid commercial positions and their contributions to 

OSS are supplemental to their employment responsibilities. There may be no relationship 

between the employment goals of OSS participants and the open source projects to which they 

contribute 30. The ability to select projects and the manner of contribution is attractive to 

professionals who view their work as artistry. Open source achievements lead to recognition 

outside of closed commercial environments and establish a reputation in an extended 

professional network 30 31. Open source projects offer opportunities to develop new skills using 

cutting-edge technologies. OSS developers are able to select projects for which they have a 

personal interest or that are of meaning to them. For an individual developer, contribution to 

an OSS project allows their creative expression to be distributed far more broadly than 

contributions to proprietary software products 27. 

Beyond altruistic motives, the opportunity for unfettered creation and the pursuit of personal 

development, there exist financial opportunities for those involved in OSS projects 23 10. 

Although OSS code may be distributed for free, consulting positions, the creation of technical 

and user documentation, premier for profit versions of OSS applications, OSS integration with 

commercial applications or processes, software packaging for facilitated installation and OSS 

hosting services are all wage-earning opportunities for those having expertise with OSS 

projects that are widely adopted. Furthermore, employment opportunities are manifested with 

commercial and government/academic investment in OSS projects 23 31.  

 

9.2.4 Government Interest in OSS Projects 

 

Government entities play a key role in the advancement of OSS. By 2004, there were 44 

countries and 99 (local and national) government entities having established pro-OSS policies 
10. These policies were primarily enacted through administrative functions including software 

procurement and via grants and subsidies aimed at training software developers to use OSS 

technologies. OSS has also been promoted through direct legislation albeit to a lesser extent 

and often restricted to local or regional government entities 10. The perception that OSS 

provides lower cost alternatives to commercial software is, as can be expected, a primary factor 

driving government interest 10. 

 

However, licensing is only one element that contributes to the total cost of ownership for 

software products. Hosting environments, support and maintenance activities, software 

customization and enhancement, the availability of skilled technicians and the interoperability 

of OSS applications with the myriad of allied software solutions required to support the breadth 

and scale of government activities must be considered 10 23. Service level commitments for 

application support are typically included in time-bound licensing schemes and can be 

exceedingly valuable for software customers such as government entities. For OSS, service 

level agreements will need to be internalized or sourced from independent commercial ventures 

that have either built the requisite OSS expertise as part of business development strategies or 
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have been spun off from the OSS community 10 23. 

 

It is common for OSS products to be created by academic research groups 9. The release of 

software developed through public investment may be an outcome mandated by the academic 

funding organization. However, software developed by academic groups is commonly 

provided freely to public researchers while requiring paid licenses for commercial users. This 

discretionary pricing model provides income to the academic developers should the software 

become widely adopted as a standard solution. As an example, the Genome Analysis Tool Kit 

(GATK), an open source genomics analysis package developed by the Broad Institute, has 

become a de facto industry standard. Recently, the Broad Institute partnered with Appistry, a 

commercial genomics solution provider, to deliver a for profit version (V2.0) of the GATK that 

includes licensing and support services. The prior GATK version was branded as a “Lite” 

version and remains free for both commercial and academic users. Academic users may update 

to GATK V2.0 for free while commercial users must purchase a license from Appistry [see 

http://www.broadinstitute.org/gatk/]. Such academic discretionary pricing arrangements are 

proper in the United States under the Bayh-Dole act of 1980. The Bayh-Dole act allows 

recipients of federally funded grants to retain title to “any invention of the contractor that is 

conceived or first actually reduced to practice in the performance of work under a funding 

agreement” [http://www.csurf.org/enews/bayhdole_403.html]. Legislated to spur 

commercialization of academic research patents, there are many examples of 

commercialization of products created by academic researchers using federal funding 

[http://www.csurf.org/enews/bayhdole_403.html]. For OSS software, enhancements created 

can be bundled and commercialized. The author is not aware of case law regarding the 

ownership of OSS contributions to products that are distributed under discretionary licensing 

policies. The author suspects that the integration of OSS contributions, when carried out by the 

licensing academic or commercial entity, establishes the licensing entity as the inventor of the 

new capabilities [See 23 and Raymond for a description of the value added distribution 

(RedHat)]. 

 

Although governments may benefit from no-cost licensing and discretionary pricing practices 

of the academic recipients of government grants, government support or production of public 

goods, such as OSS, is generally applicable to those products for which there is no proprietary 

incentive or capability to produce 10. However, there are instances of government support for 

OSS projects for which there are commercial competitors. The suitability of government-

sponsored OSS development that directly competes with established proprietary software is 

certainly debatable and is, in fact, fiercely debated, especially in democratic nations. However, 

if historical trends persist, the use of OSS by government agencies will continue to increase [10, 

see a detailed government business case for OSS in 23]. 

 

9.2.5 Commercial Interest in OSS Projects 

 

Contrary to the general perception that OSS projects are commissioned, managed and delivered 

by communities of altruistic agents, commercial entities, and their employees, play a 
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substantial role in OSS development 10. Large firms such as IBM and Hewlett Packard are 

dominant contributors to OSS efforts such as Linux and Apache 10 44. The landscape of 

enterprise software comprises a complicated business environment, served by networks of 

specialized suppliers, that enables a multitude of customers ranging from individual private 

consumers to corporate clients. Furthermore, computerized systems are aggregations of various 

interdependent products. End user applications depend upon well planned hardware 

architectures as well as intermediate software applications, such as operating systems, that 

control hardware elements, manage network protocols and secure systems from unauthorized 

access and use 17 20 9. As a result, providing value to end users depends upon layers of disparate 

products and services that must operate in concert 23 13. Often these products are generated or 

manufactured by a variety of organizations. Many of these products are integrated through 

formal or informal diversity strategies undertaken by product suppliers. The well-described 

relationship between IBM, Microsoft and Intel provides a straightforward example of 

cooperative advantage within the computer industry 35 15. IBM’s licensed PC architecture 

preferably uses Intel processors and Microsoft’s operating system. PC Models using IBM-

licensed architectures generally deliver systems to users as a bundled package having Intel 

microprocessors and Windows preloaded. Both Intel and Microsoft utilize their own branding 

schemes as part of the package. Although the consumer may be aware of the distinctions 

between the various components of their PC, the system that they purchase is an integrated set 

of software and hardware that, from the perspective of the customer, functions as a single unit 
14. The integration of IBM/Microsoft/Intel products imparts substantial marketing advantage 

for the participating companies and encourages steps to ensure seamless integration of these 

complementary products. The Windows operating system serves as a platform for 

customization through the selection of user software that meets the individual needs of 

customers. The cooperative situation has been hypothesized to be mutually advantageous for 

driving advances in technologies as, for example, new generations of software demand higher 

performing PC architectures that, in turn, demand higher performing processors designed to 

interoperate with the next generation PC architecture [14 and this author]. Moreover, the 

domination of the Microsoft IBM PC model drives further adoption of other Microsoft 

offerings, including Microsoft-branded end user software (such as MS Office) and software 

development environments (such as C# and .Net). The Microsoft consumer software offerings 

provide real or perceived advantages given that the platform vendor would be expected to best 

optimize consumer software for their own operating platform (the author neither supports nor 

refutes the reality of this specific proposition). 

 

Of note is the so-called LAMP stack, a highly popular open source bundle comprised of the 

Linux operating system, the Apache web server, the MySQL database and the Perl (or PHP or 

Python) software language [http://en.wikipedia.org/wiki/LAMP_%28software_bundle%29]. 

The LAMP stack provides a complete software distribution framework and opens the 

possibility of OSS benefiting from cooperative advantage. 

 

Cooperative integration creates, or should create, barriers for competing products, such as 
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alternative operating systems. The open source Linux operating system is compatible with the 

IBM PC platform but serves only a niche market of PC customers, typically programmers or 

advanced computer users who are attracted to this alternative offering due to low cost, an 

affinity for the OSS application itself or to make use of Linux-specific programs. Switching 

costs prevent the majority of users from considering an alternative operating system such as 

Linux. Not only would the Linux interface be unfamiliar, but the user would likely need to 

adopt replacement applications that may require retraining. Certain critical applications may 

not have Linux equivalents and file structures may not be compatible between Windows and 

Linux versions. Due to entry barriers and switching costs, the power positions of cooperative 

partners can become biased. Microsoft, due to success as a customer facing enterprise became 

highly powerful relative to its collaborators 35. 

 

Although displacing Windows from the PC market has proven difficult, back office hardware 

(server) systems were more welcoming of alternative operating systems 23 35. Back office users 

are typically computing professionals who are expected to be more amenable to adopting new 

technologies with many interested in the features of Unix-based operating systems such as 

Linux. IBM invested heavily in Linux, this, as well as investments in open source programs, 

such as the java-based open source Integrative Development Environment Eclipse (a software 

development productivity tool set competing with Microsoft Visual Studio, http://eclipse.org/), 

presumably, to undermine Microsoft’s strategic positions in operating systems and 

programming languages 35 31.  

 

Alternatively, Bessen notes that many firms participating in OSS projects appear not to expect 

competitive advantage as a result 10. Additionally, firms contributing to OSS business software 

often have commercial options offered by non-rivals. Assuming that competing proprietary 

software can be provided at a cost less than the OSS investment, given that marginal software 

costs tend to be small, there seems to be little economic sense to justify a firm's OSS 

participation 10. 

 

9.2.6 Complexity of OSS 

 

Bessen proposes that OSS software is a complex public good. Specifically, OSS products often 

provide a wide range of capabilities that promote adoption by diverse user populations for a 

variety of purposes 10. OSS provides a framework for increasing functionality in ways that are 

not necessarily envisioned by the original contributors. Bessen suggests that in addition to the 

OSS product itself, any OSS extensions to the product are in fact, themselves, innovations by 

nature. The evolutionary branching of OSS functionality, in Bessen’s opinion, would be greatly 

curtailed in an environment constrained by intellectual property contracts 10. Furthermore, 

Bessen hypothesizes that OSS software, and the specific features associated with enhancements 

would supplement, rather than compete, with proprietary software 10. As such, the innovative 

nature of software development leads commercial entities to leverage OSS alternatives for 

tailored functionality even though the low marginal costs that are generally associated with 

commercial software would appear to make such activities inefficient 10. Moreover, Bessen 
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proposes that OSS provides opportunities beyond typical mechanisms for decreasing 

transaction costs, such as bundling software applications or capabilities (i.e. the Microsoft 

Office Suite) or the creation of Application Programming Interfaces (APIs) that expose 

application functionality for use by other, external, programs 10. With APIs, consumers having 

the requisite skills can create new software capabilities by writing their own programs that 

leverage existing features in the embedded software without changing the embedded software 

itself 10. Due to complexity, post-purchase maintenance activities such as defect correction and 

business process changes to accommodate often rigid business work-flows imposed by the 

software, become a dominant factor of total cost of ownership. The propensity of firms to 

develop custom software reflects the difficulty in fitting commercial off the shelf (COTS) 

software to firm-centric specialty business processes. However, modification of OSS code 

allows companies to directly add features of interest or to integrate OSS with other value-added 

products to provide the requisite functionality 10. As Bessen notes, by 2002, the Apache web 

server hosted over 60% of active web sites and approximately 50% of commercial firms using 

Apache had either modified the code (19%) or integrated third party products (33%) 10. These 

customizations, many of which were provided back to the Apache community, led to a startling 

rate of capability advancement relative to commercial software alternatives 10. However, as 

most were customizations, Bessen argues that these activities, by and large, increased the white 

space of software product opportunity as opposed to limiting commercial software markets 10. 

 

The author wishes to note potential contrary opinion, for example, substantial use of Linux in 

corporate environments is undermining, not supplementing, investment in commercial server 

operating systems 35 23. Moreover, Bessen's own data regarding corporate adoption of Apache 

appears indicative of OSS/commercial competition 10. Regardless of motivation, it is clear that 

commercial entities have more than a passing interest in OSS. 

 

9.2.7 Transaction Costs and OSS Free-Riders (the Benkler Proposition) 

 

Yochai Benkler 9 proposed an economic explanation for the apparent success of OSS projects. 

Benkler was inspired by Ronald Coase’s classic insight that assembling dependent market 

processes into the controlled environment of a firm reduces transaction costs relative to free 

markets 9. Benkler reasoned that if OSS projects are able to reduce the feature development 

costs (i.e. the software equivalent of transaction costs) below that required by corresponding 

commercial implementation then OSS development would be more efficient relative to 

commercial development. Software development transaction costs are associated with the 

Software Development Life Cycle (SDLC) and, as noted above, it is difficult to envision how 

the typical SDLC could progress in a minimally controlled environment 31. 

 

Open projects such as the Mars Public Mapping Project, in which surface images of the planet 

Mars were annotated by public (presumed non-scientific) volunteers, were facilitated by 

careful decomposition of the surface into finite image areas that could be annotated by the 
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typical volunteer in approximately ten minutes 9. Individual participants could generate as 

many annotations as they wanted. However, the low cost, in contributor time, required to 

produce a single unit of project value (i.e. the annotations associated with a single image 

region) encouraged widespread individual contribution. Essentially, the Mars Public Mapping 

Project decreased the transaction costs of annotation through modularization of the image 

surface into distinct regions that could be mapped in isolation. Each distinct planetary area was 

annotated many times with the results of the multiple reviews harmonized, or integrated, simply 

and cheaply via software. Benkler realized that modular software architectures that permit 

distinct software features to be delivered in isolation would promote individual contribution 

and facilitate software integration. If the software framework was appropriately modularized, 

the transaction costs could be reduced enough to compete with commercial SDLCs 9. 

 

Given a population of OSS developers sized comparably to a discrete set of isolated modules, 

that are small enough to be economically developed by a single individual and that implement 

the desired software capabilities, the OSS developers could create the software project with 

limited central control and also tolerate free riders who would use the software but not 

contribute to its development 9. In this context, OSS free riders do not include end users who 

lack software development skills (although such people may contribute by testing OSS 

software builds or by providing other valuable services such as user documentation). 

 

Benkler considered the distinction between “click worker” efforts such as the Mars Mapping 

Project and OSS development. Specifically, there will be an expected diversity of effort, in 

terms of difficulty/time, required to complete the coding of individual modules. Benkler 

conjectured that diversity in the “option value” (difficulty or amount of effort relative to value) 

of modules would have an impact on the OSS project participation 9.  

9.2.8 Game Theory and Open Source Participation 

 

Although interesting speculation, Benkler’s hypothesis lacked quantitative support. Carliss 

Baldwin and Kim Clark, who have extensively researched concepts of modularity, expanded 

Benkler’s supposition through the use of involuntary altruistic game theory 6. To model an OSS 

scenario, the game participants are given to be OSS developers having some measure of 

capability, or caliber of skills. These developers can either elect to participate in (i.e. “work”) 

or abstain from (i.e. “no work”) developing a given OSS module having some “value” (can be 

modeled as the relative software value of the module relative to the cost required to develop 

the module). OSS developers have full knowledge of the existence of each other as well as the 

existence and value of a particular module. However, OSS developers cannot interfere or 

restrict each other’s efforts. Additionally, an individual developer cannot determine whether 

other developers have decided to work on or abstain from the development of individual 

modules 5 6. 
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The following basic game describes economic impediments to OSS development. Two 

developers of equal caliber contemplate developing the same module. The module value (v) is 

assumed to be greater than the developer cost to produce the module. The cost to produce any 

module is always assumed to be greater than zero. 

 

Constraints: 

1. Two developers want the same OSS capability (or value v) 

2. Either developer can create v at cost c (equal caliber). Development (or work) = v-c 

assuming that v > c and c>0 

3. Each developer has full knowledge of the potential value v 

4. Neither can restrict the other's effort 

 

Figure 1: Simple game with two developers of equal caliber and Nash Equilibria circled. 

The highest value is obtained by the free rider when one developer works, the inference 

being that developers are incentivized to free ride. 

 

 
 

In the basic game, it is obvious that no value is generated if neither developer decides to work. 

However, as both developers work in isolation, their contribution is redundant should both elect 

to work. It follows that there are two Nash Equilibria (game states in which neither participant 

can unilaterally enhance their position) that represent the most efficient solutions in which one 

developer works and the corresponding developer elects not to work. In these cases, the non-

working developer, as a free rider, gains the most value. Theoretically, free riders will benefit 

most in the basic OSS scenario, which is indicative of the general problem facing economists 

trying to explain the phenomenon of OSS participation 6. 

 

The basic game also highlights an important distinguishing characteristic between click 

workers and OSS developers. Software is fundamentally non redundant as a single set of code, 

such as the module described in the basic game, when loaded by an operating system, can be 

executed any number of times by client programs (other dependent software modules). 

Therefore, two developers producing modules having the same functionality will be redundant 

and one of the modules will be selected for integration and one will be discarded. This 

competition drives the benefit enjoyed by the free riders. 
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Alternatively, in the click worker scenario (Mars Mapping), contributions are summarized such 

that each submission by a click worker contributes to the final outcome. For the Martian 

annotations, multiple independent annotations for the same image region are all integrated by 

software processes to produce a final annotation that represents the collective effort. For the 

click worker scenario, the Nash Equilibrium corresponds to the situation in which both 

participants elect to work as their respective contributions (values) will be summed in a manner 

that creates more value than each participant offers independently. There is no competition in 

the click worker scenario as opposed to the OSS scenario where wasted effort can result from 

the lack of centralized control over assignment of software modules. 

  

Figure 2: The simple game with integrated value (click worker scenario with additive 

value/cost). The Nash Equilibrium is circled. In this case, both workers are incentivized 

to work as each contributes to a greater total value than either can provide alone. 

 

 
 

The basic OSS case is somewhat contrived as code submissions would generally be 

differentiated by various factors in addition to implemented features such as reliability, 

performance, code quality and developer productivity (the productivity of software developers 

has been determined to have the greatest range of all major professions, including physicians!) 
38. The basic OSS scenario can be extended by introducing heterogeneity of talent between the 

two potential OSS developers. In this case, given the same cost “C” (time for example) there 

is differential value created (small value “v” and high value “V”) by each developer. 

 

Constraints: 

1. Two developers want the same OSS capability (or value V) 

2. Developer 1 (higher caliber) can create value “V” at cost “c” 

3. Developer 2 (lower caliber) can create a smaller value “v” at an equivalent cost “c” 

4. Development (or work) = V-c or v-c assuming that V>v and v > c and c>0 

5. Each developer has full knowledge of the potential value V 

6. Neither can restrict the other's effort 

 

Figure 3: A scenario of unequal developer caliber and unequal module value. In this case, 

the maximum value is generated by matching the caliber of developer to module value. 
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Regardless of the factors that differentiate the superior value provided by Developer 2, 

Developer 2’s module will be chosen for integration while Developer 1’s alternative lower 

value module will be discarded. In general, when multiple developers compete in the delivery 

of OSS modules, the contribution from the higher caliber developer will be expected to become 

part of the OSS project. If the developers are aware of their relative calibers with respect to the 

developer pool the lower caliber developers are likely to elect to be free riders and assume the 

value attributed by the higher caliber developers and incur no cost. If the differential of 

developer caliber is unknown at the onset, it would likely be discovered over time by each 

developer depending on whether their contributions are accepted for integration 6. 

 

Assuming heterogeneity of talent, contributions are expected from the more talented 

developers while less talented developers would be expected to become free riders. Free riders 

retain the highest value in this model. Should there be information regarding the caliber of 

participating developers, lower caliber developers would be expected to refrain from 

participation. In the case of a surplus of potential developers the free riders are likely not to 

detract from the value of an OSS project. However, in a smaller developer pool in which all 

modules are of equal value the loss of the lower caliber developers to the frustration of potential 

competition would be expected to slow OSS development. Again, the inability to centrally 

assign resources would be expected to have a deleterious effect on OSS development. 

 

Baldwin and Clark introduced a probabilistic element to their models [6]. 

 

Probability of working (p) = 1-cost(c)/value(v) 

 

In this case, higher costs and lower values decrease the likelihood of working. This is consistent 

with the expectation that high caliber developers (lower cost, higher value) will be more likely 

to work relative to lower caliber OSS participants. However, in the case of click workers, such 

as the Mars annotators, caliber differences might be associated with the time required to 

produces a quality annotation (e.g. the fastest annotators can complete in 5 minutes vs. the 

slowest in 15 minutes). The outcome associated with discrepancies in Mars click worker 
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productivity might become manifest as a positive correlation between increasing click worker 

speed and increasing number of regions annotated per click worker. However, the probability 

of participation by any single Mars click worker may not be well represented by this 

probabilistic model.  

 

Baldwin and Clark extended the probabilistic model to multiple developers as follows 6. 

 

Probability of working (p) given a pool of “N” developers = 1-cost(c)/value(v) 1- (c/v)^(1/N-

1) 

 

This extension leads to a negative impact of increasing pool size on OSS contribution. This 

relationship is in keeping with the expectation that competition leads to free ridership (i.e. more 

developers, increasing competition for modules, increasing the amount of “wasted” work, 

decreasing participation) 6. 

 

Figure 4: The chart demonstrates the impact of Baldwin and Clark’s equation for 

probability of working at increasing number of developers at various probabilities.  

 

 
 

As is expected from Benkler’s proposition, for a given developer pool (N), only one developer 

need work for all N developers to attain v. However, when extending the probabilistic model 

to a larger pool (N) of developers using N = 1- (c/v)^(1/N-1) [from 1], plotted in Figure 4 for 

2-100 developers, the probability of individual work decreases with larger N. 

 

Baldwin and Clark next simulated the probabilistic model with various numbers of developers 

and modules over successive time periods. The simulations demonstrated that matching the 

number of developers with the number of modules maximizes participation. Furthermore, there 

is a negative relationship between free riders and the number of modules with free riders 

decreasing with increasing numbers of modules assuming the number of developers is fixed. 

These results are not unexpected given the impact of competition in the two-player games 

above. A perfect sub-game in which each developer is assigned to a distinct module is a logical 
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extension of the basic games although the outcome is unlikely in the absence of centralized 

planning or, as we shall see, variations in developer caliber and module value 6. 

 

The final element which Baldwin and Clark added to the simulation is the assignment of values 

to modules according to a normal distribution. The variance of the distribution across the 

modules is referred to as the overall option value of the system 5 6. The simulation now includes 

multiple developers of heterogeneous caliber and multiple modules having heterogeneous 

values. In a one time period game under these conditions, the authors demonstrated a decrease 

of free riders with either an increase of modules (consistent with the prior experiment) or an 

increase in option value 5. 

 

From these results, the authors propose that variance in option value could lead to a more 

efficient distribution of developers to modules. Assuming some level of self-awareness on the 

part of the developer, each developer will be likely to align themselves with a module that is 

commensurate, in value, with their capabilities. The highest caliber developers will be likely 

to select the highest valued modules and vice versa in the range of module value 6. Figure 5 

shows a hypothetical example (module value V > module value v, developer Cost C > developer 

cost c). The sub game optimum is achieved when the lower skilled developer (C) works on the 

lower value module (v) and vice versa. 

 

Figure 5: An example scenario that demonstrates the advantage of matching the relative 

caliber of developers with the relative value of modules.  

 

 

 

It should be noted that the element of time does not factor into the model 6. This obvious 

simplification could detract from the model given that software quality may be associated 

with time of effort in actual implementations (this author's note). Of course, potential 

interdependency between modules would force a natural scheduling of module contribution 

that is not included in the model (this author’s note). 
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The combination of option value and developer caliber is a potential force to promote OSS 

contribution in the absence of formal centralized planning. If indeed relevant, a basic 

requirement for an OSS collective would be the creation of a modular framework during the 

early iterations of OSS product development. Moreover, a product roadmap (whether 

evolutionary or preplanned) that includes implementation diversity/difficulty with regards to 

future modules would appear conducive to engaging an active and productive community of 

developers having a broad range of capabilities. Fundamentally, Baldwin and Clark have 

provided quantitative theoretical support to Benkler’s intuition regarding the potential of the 

combination of modularity and option value to lower transaction costs of OSS. 

The key game outcomes that arise from Baldwin’s and Clark’s research are summarized 6. 

1. The probability of free-riders increases with increasing number of developers 

2. Increasing modularity leads to increased participation 

3. Increasing option value leads to increased participation 

4. Matching the relative to the caliber of the developer to the option value of the module 

promotes participation 

 

9.2.9 Conceptual Foundations of Modularity 

 

Although modularity is recognized as a central characteristic of well-developed software, it is 

important to reaffirm the definition and the generally accepted value associated with modularity 

as a programming best practice. The benefits of modularity became research topics in the late 

1960’s and early 1970s 29. A module can be defined as a grouping of related interdependent 

tasks having well established inputs and outputs. The inputs and outputs are designed to 

eliminate ambiguity associated with interactions between multiple modules. In principle, 

modules should be stand-alone sources of key capabilities, and as such, can be implemented 

and evaluated in a disjoint manner. Well designed modular systems are expected to be more 

resilient to system-wide errors, with such errors more easily identified, traced to source and 

corrected29. Additionally, modules should be replaceable without perturbing the system 

provided that strict adherence to input and output specifications are maintained 29. 

 

Parnas noted that modularization is associated with design decisions “which must be made 

before the work on independent modules can begin”. Modularity results from a process of 

functional decomposition, in which the needs of a system are deconstructed into components 

that are distinct and constrained enough to be unambiguously understood 29. Parnas 

recommended that module design should be guided by the most difficult or malleable aspects 

of the systems with modules incorporating and “hiding” the implementation of these key aspect 

from other modules. The concepts of encapsulation and information hiding are now standard 

practices for modular-based software development methodologies such as Object Oriented 

Programming 17 20.  Of course, OSS (by constitution) guarantees access to all parts of the source 

code such that there are no restrictions from reading and reviewing any component of the code 
25. However, the software operating framework can apply access restrictions during program 

execution. 
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Figure 6: A simple example of a software module 

 

 
 

As a simple illustration, consider a possible scheme for calculating bank account interest. A 

client module needs to know the interest on a bank account. The client “calls” the “Calculate 

Interest” function (or method) on the “Banking Module’s” public interface, passing the 

banking module an account number. The public interface is the only mechanism for the client 

to access the capabilities of the banking module. As a result of the client’s call to calculate 

interest, the banking module returns the actual amount to the client. In this scheme, the client 

does not know the how the banking module actually calculated the interest. The client must 

trust that the banking module has accessed the correct account information and has provided 

the correct interest amount based on the bank’s declared services to the account holder. The 

client can neither intervene in the interest calculation (such as by dictating a compounding 

model or interest rate) nor can the client determine the method the banking module has used to 

fulfill the request. The public interface function essentially provides a “contract” between the 

client module and banking module. The preconditions for determining interest must include 

the provision of an account number (presumably that conforms to the bank’s specific account 

format, exists and is active). Post conditions would presumably include the format of the 

amount returned (for example, the interest will be in US dollars, to the hundredth decimal place 

rounded down to the nearest penny) and provide a mechanism to return an error (account 

number does not exist, incorrect account number format, etc.). 

 

This simple example can be aligned with modularity benefits put forward by Langlois and 

Garazelli 25.  

 

1. Limits the need for widespread communication among the modules (and their creators!) 

The public interface defines and simplifies communication between the client and 

banking modules 

2. Economies of substitution: Replacing modules without impacting the system as a whole 

Private

Function

Function

Clent 

Module

Interest
Account #

Calculate 

Interest

Banking

Module

Hidden 

Functions, 

data

Interface



Concepts in Information and Knowledge Management for Translational Research 

 

The banking module could be replaced (e.g. with a new module having different 

interest schedules) without any impact to the client provided that the new banking 

module exposes an identical public interface 

3. Specialization and the effective use of local knowledge for comparative advantage 

The client and banking modules could be developed by separate teams having 

specialized skills. For example, the client could be created by the bank’s customer 

service team to be used as part of a customer web portal while the banking module 

could be created by the bank’s operations team responsible for managing and 

monitoring account transactions.    

4. The more the system benefits from rapid trial-and-error learning 

With defined interfaces, simulated modules can be created for initial development. 

Based on the public interface of the banking module, the client team could create a 

simulated banking module that returns default interest values and error messages. 

This approach would allow the client team to develop and test software 

independently without needing immediate access to the resources associated with 

the banking module.  

5. Coordination is imbedded or institutionalized in the structure of the system 

The public interface of the banking module enforces conformance to bank policy 

by ensuring that the banking module retains complete control over transaction 

processing 

 

Although trivial, the simple example of modular interaction described above is indicative of 

the potential benefits associated with modular design. Moreover, it becomes elementary to 

juxtapose the described benefits of modularity with Benkler’s proposition that modularity 

fosters OSS participation 9. Enabling independent action, specialization, trial and error 

approaches, facilitated substitution would appear to promote the type of productivity observed 

in successful open source development communities. However, the aspect of coordination and 

enforcement of institutionalized structures as a benefit of modularity is difficult to reconcile 

with Benkler’s model, and subsequently Baldwin and Clark’s quantitative assessment. Clearly, 

Benkler considered the integration of contributions a critical component to the success of 

volunteer communities 9. The economics of coordination is easily demonstrable in the click 

worker scenario in which integration processes can be manifest in computer programs written 

by a central authority and in which click worker contributions are congruous. Per Langlois and 

Garazelli, the advantage gained from such communities is an unmistakable modern twist of 

Adam Smith’s division of labor evident in the top down coordination and division of repeatable 

activities 457. Although the author in no way intends to disparage the great ingenuity, efficiency 

and value associated with click worker projects, the basic economic premise has long been well 

understood and utilized [per Adam Smith, Wealth of Nations]. However, the complications 

associated with organizing the development of interrelated collections of unique system 

capabilities, derived from coordinated interactions of purpose-built subcomponents created by 
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independent volunteers possessing distinct specialties (OSS communities) seem daunting and 

worthy of exploration. 

 

9.2.10 Implications of Modular Design 

 

Regardless of the theoretical and practical advantages of modular software design, there are 

many ramifications in electing to architect systems based directly upon the outcomes of 

analysis by functional decomposition. The suitability of modular software design is not 

universally accepted. Brooks’ Law 11 infers a general inverse relationship between the number 

of software developers and the speed of development. This relationship, demonstrated during 

the development of the IBM 360 Operating System, was inferred to be due to the exponential 

costs of coordinating personnel efforts on a highly interconnected project that, consequently, 

nullifies any advantage from division of labor 25. Brooks’ system was non decomposable and 

required developers to understand the breadth of its design and operations. Brooks and Parnas 

debated the merits of encapsulation and information hiding for decades as non-decomposable 

(integral) and decomposable approaches to software architecture carry reciprocal trade-offs. 

 

Establishing modular systems requires an initial fixed cost as the design rules (interfaces and 

modular structure) must be pre-developed and accepted. These design costs can be substantial, 

as can be the process of communicating the resulting design to enable participation 25. Modular 

systems are more likely to be prone to performance issues than corresponding integral systems 

should various modules require coordinated optimization in order to maximize performance 25. 

Although modular design imparts substitution efficiency associated with the facility in 

replacing modules, systemic design changes require recreation of the modular design rules. 

Changes to modular design rules lead to re-incurring the initial fixed costs of modular systems. 

Moreover, if the modular system supports many clients, each client is also likely to require a 

corresponding fixed-price design phase to rationalize the changes to the design rules of the core 

system 25.    

 

Langlois and Garazelli introduce the concepts of autonomous and systemic innovation. 

Autonomous innovation describes system modifications having local impact, such as changes 

to the “hidden” code of software modules that do not violate established design rules. 

Conversely, systemic innovation refers to the need for simultaneous dependent modifications 

across the system which, for modular systems, are expected to mandate new design rules. 

Modular systems foster autonomous innovation while integral systems foster systemic 

innovation 25. 

 

Moreover, speed of implementation may favor integral systems as the specification and 

socialization of design rules may lead to unacceptable delays. Design rules that are generic and, 

thus, potentially reusable would remediate the initial fixed costs associated with modular 

designs 25. 

 

Although only a brief examination of the essence of modular design concepts, the necessity for 
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substantial up-front fixed-price coordination associated with modular systems challenges the 

Benkler proposition that modularity coupled with the efficient self-assembly of suitable 

matches between modules and developers is the core driver (secret sauce) of OSS. Moreover, 

if modularity is indeed prerequisite for successful OSS projects, there should be types of 

software development initiatives, such as those requiring systemic innovation to support 

emerging performance requirements that would be unsuited to an OSS approach. (It would be 

interesting to determine whether the differentiation of autonomous and systemic innovation is 

at all correlated with Bessen’s proposed white space of OSS solutions). 

 

9.2.11 Expanding the Model of the Volunteer Community 

 

Langlois’ and Garazelli’s summarization of the coordination challenges associated with 

modular design resolved to an expanded characterization of the OSS community model. 

Models for exchanging products and effort with respect to whether providers and consumers 

self-identify their intentions were contrasted. Products are considered those market 

contributions that are easily measured or priced while effort refers to contributions that are 

provided by individuals and generate value via cooperation. As such, measuring and pricing 

effort is nontrivial 25. 

 

The classic market serves people who self-identify (in the absence of coordination) their 

products to consumers. The classic (Coasian) firm identifies people having requisite skills and 

coordinates their efforts to meet cooperative value objectives. Contract or outsourcing firms 

coordinate personnel to deliver discrete products or services. Call services and other forms of 

division of labor are categorized as outsourcing and, it follows that, click worker initiatives 

would conform to the outsourcing model 25. 

 

The model of Voluntary Production was proposed as a combination of self-identified 

contributions and effort and is inclusive of open science and OSS projects. However, Langlois 

and Garazelli noted that voluntary production invariably occurs within the context of some 

preexisting underlying element of structure or coordination, whether technological, research 

driven or managerial 25. The result is a “hybrid” model of output in which people self-identify 

their contributions based on their skills and interest while agreeing to conform to, at least some, 

element of structured cooperation. An additional value associated with self-selecting groups of 

contributors is the potential emergence of “collective intelligence”. That the emergence of 

creative ideas is associated with intellectual diversity is well documented 22. If, indeed, 

voluntary production initiatives lead to cognitive diversity as a result of self-assembly, then 

such projects would enjoy advantages in innovation and problem solving. 

 

The Benkler proposition has now been expanded to include a necessary element of coordination. 

Although the spontaneous self-assembly of OSS project teams seems implausible, modular 

architecture coupled with comparative advantage through self-identification could reduce the 

need for project structure enough to foster voluntary production. The potential collective 

intelligence that emerges might explain the perception that open source products are of higher 
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quality 25 22. 

 

9.2.12 Design Patterns and Modularity 

 

Inspired by the work of architect Christopher Alexander 3, the software community has 

established design frameworks to guide the development of common recurrent software system 

features and capabilities17 20. Alexander and his collaborators dissected and cataloged the 

salient features leading to successful architectural implementations, ranging from the 

application of basic architectural components, such as design and placement of windows, 

through large scale city plans. This architectural “pattern language” could then be used as a 

basis for future architectural design 3. As a result, patterns-based construction products, such 

as buildings, courtyards and neighborhoods, could be creative and novel in form and execution 

while still benefitting from conformance to pre-established product-specific success criteria 3. 

 

Originally explored by Kent Beck and Ward Cunningham in 1987 20, the creation of software 

development pattern languages was carried forward to groundbreaking effect in the 1990’s 17. 

Patterns based-solutions now exist for standard software design dilemmas relevant to 

applications ranging from single-user workstation programs to multi-tiered distributed 

software environments 20. Software patterns are typically presented with a context that 

describes the pattern’s implementation and explains the pattern’s value in solving a specific 

design challenge or set of design challenges. The pattern’s implementation is defined using 

modeling constructs, such as diagrams, and a coded example is usually provided. Pattern 

documentation typically concludes by listing supplemental related patterns such as those that 

are commonly used in concert with, or are derivatives of, the pattern described 3 17 20. 

 

Software design patterns, by their nature as established professional competencies, are intended 

to promote reusable code structures, provide elements of direct organization and coordination 

that embody, at least partly, the set of design rules required by modular projects 17 20. As such, 

the use of design patterns would serve to reduce the initial fixed cost associated with functional 

decomposition. Furthermore, patterns that address certain performance challenges could be 

leveraged proactively by teams planning modular software systems. The use of software design 

patterns, now well entrenched in the discipline of software engineering, could facilitate the 

development of the modular designs that, as detailed prior, are implicated as OSS success 

factors by a variety of investigators 9 6 31. 

  

9.2.13 Empirical Evidence Associated with OSS 

 

Software design patterns, modularity and comparative advantage have been proposed as 

elements that promote the economic feasibility of voluntary production of software relative to 

corresponding closed source/commercial initiatives. Collective intelligence could, potentially, 

provide the component of added value that accounts for the perception that open source projects 

exceed the quality of similar commercial offerings. Given the substantial research put forth to 

create a cogent and representative theoretical basis for software voluntary production, it is 
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important to review relevant empirical support for these theories. 

 

At time that Benkler was developing the concept of modularity as a foundation for OSS, 

Stamelos et. al. were analyzing OSS code quality to quantitatively determine whether quality 

is, in general, distinguishable between OSS and commercial solutions 34. Stamelos et. al. 

describe the OSS process as a rapid evolutionary approach based on the initial work of an 

individual, or small local core of developers, followed by the release and participation of a 

cascade of open source developers. Although there were many clear examples of large-scale 

OSS success (Apache, Linux etc.), however, the lack of an OSS “process” and metrics to 

quantify productivity and quality concerned many in the research community 34 10 23. 

 

This case study [in34] employed a quality assessment software suite, Logiscope‚ (Telelogic, 

2000) that automatically generated comprehensive code quality metrics, comparing these with 

user-defined programming standards. Moreover, Logiscope’s programming standards were 

based on conclusions of an empirical analysis of millions of lines of industrial source code 34. 

One hundred individual applications built upon the GNU/Linux open source operating system 

were evaluated in the case study 34 with the following metrics assessed. 

 

1. Number of statements (N_STMTS) 

a. A count of the average number of executable statements per component [1–50]. 

2. Cyclomatic complexity (VG): as defined by McCabe (1976) 

a. A metric based on graph theory that represents the number of linearly 

independent paths in a connected graph. For the Linux assessment, this is a 

metric that represents the number of alternate flows of control for a tested 

component and is considered an indicator of the effort needed to understand and 

test the component [1–15]. 

3. Maximum levels (MAX_LVLS) 

a. Measures the maximum number of nestings in the control structure of a 

component. Excessive nesting reduces readability and testability of a 

component [1–5]. 

4. Number of paths (N_PATHS) 

a. The Counts of the mean number of non-cyclic paths per component. This is 

another indicator of the number of tests necessary to test a component [1–80]. 

5. Number of unconditional jumps (UNCOND_J) 

a. A count of the number of occurrences of “GOTO”-like statements that 

contradict the principles of structural programming for sequential control flow 

[0]. 

6. Comment frequency (COM_R) 

a. The proportion of comment lines to executable statements [0.2–1]. 

7. Vocabulary frequency (VOC_F) 

a. Defined by Halstead (1975) as the sum of the number of the unique operands, 

n1, and operators, n2, necessary for the definition of the program. This metric 

provides an alternative measurement of component size [1–4]. 

8. Program length (PR_LGTH) 

a. Measures the program length as the sum of the number of occurrences of the 

unique operands and operators. This metric provides also another view of 
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component size [3–350]. 

9. Average size (AVG_S) 

a. Measures the average statement size per component and is equal to 

PR_LGTH/N-STMTS [3–7]. 

10. Number of inputs/outputs (N_IO) 

a. A count of the number of input and exit nodes of a component with the equality 

of inputs and outputs an accepted practice associated with program quality. 

 

Logiscope evaluated “testability, simplicity, readability and self descriptiveness” producing 

recommendations of “accept, comment, inspect, test and rewrite” and the authors developed a 

method to aggregate the results across components and applications that is normalized for 

specific programming languages 34. In considering the results, two major interpretations are 

made; OSS code quality is better than would be expected given the limited control over 

development, however, the quality is lower relative to the commercial software evaluated a 

priori using Logiscope. The analysis also included expert opinion regarding the usability (user 

satisfaction) of the applications and the case study authors purport an inverse relationship 

between module size and usability. User satisfaction decreases with increasing module size, 

this is an expected outcome. However, there appears to be a maximum level of user 

dissatisfaction such that dissatisfaction is no longer sensitive to further increases in module size 

beyond some threshold length 34 (this author’s naïve interpretation is that possibly, at some 

point, the software simply becomes unusable). 

 

Stamelos et. al. recommends, as viable options, that the central coordinator enforce code 

standards and plan for strategic re-factoring efforts (i.e. deliberate quality re-engineering of 

existing code). That coding style can be emergent and self-regulated by individual 

programmers outside of coordination is considered, by the authors, likely not to be feasible 34. 

 

Conversely, Reasoning LLC published findings comparing open source and corresponding 

commercial software based on Apache, Linux TCP/IP and MySQL (a popular open source 

database system) 32. Reasoning tested for memory leaks, null pointer de-references, bad de-

allocations, out of bounds array access and uninitiated variables using a proprietary code 

quality assessment tool.  Reasoning’s approach focused on coding issues that lead to explicit 

software execution problems rather than coding principles and best practices associated with 

the work of Stamelos and colleagues. As the assessment was proprietary, there is little to discuss 

in terms of methods other than the number of lines of code assessed between the open source 

and corresponding industry applications and whether the assessment was done on code early 

or late in the development life cycle 32. 

 

Apache v2.1 Development release 

Apache .53 defects/KSLoC* (~58 KSLoC) 

Industry .535 defects/KSLoC (30000 KSLoC) 

 

LINUX TCP/IP v2.4.19 Production 

       Linux 0.10 defects/KSLoC (~82 KSLoC) 
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Industry 0.25 defects/KSLoC (~22000 KSLoC) 

 

MySQL v4.0.16 

        MySQL .09 defects/KSLoC (~235,667 KSLoC) 

        Industry defects .535 (35000 KSLoC) 

 

**Tomcat 

297 defects/KSLoC (~127 KSLoC) 

 

*KSLOC Kilo (1000s) Source Lines of Code 

**Tomcat was assessed alone without comparison to a corresponding industry standard  

 

 
 

Reasoning found that the defect density was smaller for MySQL and Linux TCP/IP, while 

Apache was similar in defect density, relative to corresponding commercial alternatives. 

Moreover, Reasoning notes that MySQL and Linux TCP/IP were assessed later in the 

development life cycle vs. Apache and that the outcomes could be indicative of quality 

enhancements relative to product maturity 32.  

 

Although these OSS quality case studies are informative, the author notes the apparent dearth 

of definitive quantitative quality comparisons between OSS and commercial software packages. 

Both cases presented lack comprehensive representations of OSS products and the methods 

used by Reasoning are not available for scrutiny. 

 

Additionally, perplexing is the aspect of modularity with Linux being an often-used case 

example for OSS. Linux is based on the Unix operating system developed in the 1970’s by Bell 

Laboratories 23 28. Unix is based on a “kernel” that provides core operational capabilities and 

interacts directly with hardware systems (file systems, registers, peripheral, security, 

connectivity, etc.). The capabilities of the kernel can be extended by programs written (through 

“Unix shell language”) in a manner that leverages the Unix kernel’s capabilities for value added 

operations. These program extensions could be easily shared and themselves modified or 

reused as the basis for further extensions. Bell Labs’ potential claim for intellectual property 

rights over the Unix extensions prompted the creation of the open source extension libraries 

GNU and Berkeley BSD. These open source efforts focused on UNIX extensions rather than 
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creating an OSS Unix Kernel. With the Linux Operating System, Linus Torvalds contributed 

an open source Unix-like operating system kernel 23 28.    

 

As noted by Narduzzo and Rossi, Linux is based on hierarchical design and fully modular 

designs were evaluated and dismissed as too risky and other modular designed contemporary 

operating system projects, such as Windows NT and HURD, were anecdotally understood to 

be poor performing and progressing more slowly than anticipated 28. For Linux, Torvalds 

developed the hierarchical design philosophy and, after the initial open version was released to 

additional developers, Torvalds became responsible for code reviews as well as testing and, 

thus, provided the centralized locus of quality control for development 28 31. 

If Linux is to be deemed weak as a case example for OSS in terms of modularity and 

decentralized control the Linux case may posit extensibility as another potential driver for OSS 

success. Extensibility is defined as the addition of features/capabilities to a software product 

without needing to modify, or otherwise impact, the existing software 1 4. Shell script additions 

to the Unix kernel as well as the plug-in frameworks associated with many software packages, 

such as internet browsers and office productivity suites (such as Microsoft Office), are 

examples of extensibility. Henttonen et. al. described the importance of extensibility and, as 

noted in other contexts prior, integration potential to OSS. Extensible systems demonstrate ease 

of feature development and an element of loose coupling between feature additions that should, 

in principle, well support distributed development. However, extensibility as a driver of OSS 

success may be highly logical (and likely correct) 453 but the empirical support of this 

hypothesis, in the opinion of this author, is not readily apparent.   

 

Although the apparent lack of empirical differentiation between OSS and closed 

source/commercial packages may be at first surprising, it is important to appreciate the 

challenges associated with quantitative evaluation. Wong, Kim and Dalton recently published 

a method, called “CLIO”, for detecting software modularity violations and tested the product 

on OSS projects Hadoop (a large-scale high-performance database application) and the Eclipse 

software development environment 36. CLIO attempts to determine whether separate modules 

within a system must change together during development and, as a consequence, erode the 

benefits obtained by isolating code into distinct operating units 36. CLIO resolves the system 

modularization, in that the system’s modules are identified structurally, using a scoring 

technique developed by Baldwin and Clark 36. As a separate action, the software revision 

histories are mined to determine legacy concurrent code modifications. CLIO then reconciles 

the modular architecture with the concurrent change log to determine whether multiple 

structural modules must change in concert during code modification. There is an inverse 

relationship between change dependency and modularity, the greater the change dependency 

between modules the less modular the system 36. Assuming that CLIO can import the structural 

and legacy revisions and analyze the associations in real time (the analytical time and need for 

multiple attempts is not clear), the resulting violations are manually confirmed in the code by 

CLIO users. Additionally, revisions were checked manually to determine whether exposed 

violations were fixed or were identified to be fixed in a future software release. Moreover, it 
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seems unlikely that the revision and architecture information would be formatted for use by 

CLIO without manipulation 36.  As the architecture of a system may also change over time as 

modifications are realized, the development of a structural representation of the software to use 

for comparisons could be problematic. Additionally, use of CLIO assumes that architecture and 

change revisions have been documented in detail over the course of the software project and 

are readily available. Software projects having such comprehensive documentation are likely 

to be highly centrally coordinated with enforced disciplined management practices [author’s 

opinion]. In a sense, the types of projects that are evaluable by CLIO may not represent the 

breadth of software projects that are of interest. 

 

Quite simply, software quality evaluation is time consuming and open to interpretation. 

Although the source code is available for OSS projects, supplemental information pertinent to 

such evaluations, such architecture and change history, may not be complete or be very difficult 

to construct. New methods of quantifying code quality continue to emerge. There appears to 

be limited incentive, for commercial software vendors, to contribute their source code for such 

evaluation (at least evaluation leading to academic publication), as the interpretable outcomes 

could subsequently require product defense.   

 

Moreover, those prosecuting comparison studies that definitively contrast and distinguish OSS 

processes with those of commercial software practices are likely to be, at least partly, impeded 

by the universal application of software best practices. Code standards, modularity, 

extensibility and design patterns are all techniques that are applied, and beneficial to, any 

software project. Applying measures of significance to comparisons between software 

initiatives that employ similar best practices may be further problematic.  

 

Given the pragmatic issues associated with comparing software quality, it is not surprising that 

studies that definitively compare OSS with commercial (or otherwise closed source) software 

solutions, across a wide range of product types and implementations, appear elusive.  

 

9.2.14 Alternative Points of OSS Comparison: Business Requirements for OSS 

As noted above, Bessen hypothesized that OSS represents a complex public good in that open 

software can be readily tailored to meet the variable needs of individual developers 10. With 

OSS, commercial software developers are able to refine software implementations to meet the 

specialized needs of the business processes within the firm for which these developers are 

employed. Bessen proposes that leveraging application programming interfaces (APIs) as a 

form of customization is less empowering than modifying the underlying source code. With 

APIs, capabilities are limited to those exposed by the developers of the API, which may not 

provide the capabilities required by API users, and proposed API modifications (and 

corresponding schedules) may be out of the control of the API’s users 10. 

 

However, circumventing programmatic interfaces (as Bessen purports to be valuable for 

customization) may be contrary to the notion of modularity expanded upon earlier 25. If 

customizations require systemic 25 changes to the core software code the costs of altering the 
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design rules and integrating the changes would appear daunting and may be expected to 

fracture open source code bases. Therefore, the need for repeated systemic changes would be 

inconsistent with the notion of modularity as a key enabler of voluntary production in OSS. 

Customizations implemented by repeated autonomous 25 changes to the core code may be 

tolerable if these can be enabled by, for example, modular substitution. 

 

The challenges are similar for extensible frameworks. Extensibility can be cast as an 

architectural enabler of both modularity and open customization. It has been noted prior that 

extensible frameworks provide such value for operating systems, internet browsers, 

spreadsheets and other applications that are built upon a core set of generic functionalities (e.g. 

hardware components, browser and worksheet models, mathematic algorithms) that are highly 

robust to change and can be perpetually “decorated” through a progression of new 

combinations of the existing base-level capabilities 21 24. Extensible frameworks are not 

applicable to all process scenarios and, even when applicable, their up-front specification, like 

that of any modular system, may be non-obvious. However, where extensible software 

frameworks exist, it could be argued that such a framework eliminates, to a large extent, the 

value of having the underlying core code provided as open source as the extensions are [ideally] 

completely decoupled from the core code base. The need to modify the underlying code of a 

purported extensible framework, to enable further extensions, is, in a strict sense, a 

contraindication to the definition of the framework as extensible 24. Any systemic 25 

modifications to the core code of an extensible OSS framework to enable new extensions could 

risk code base fracturing. 

 

Overall, that code base customization is hypothesized to provide a driver for OSS adoption, 

more so than API development, is at best uncomfortable as such customization carries the risk 

of branching software versions that could be prove difficult to integrate in the absence of 

centralized management. However, Bessen’s observations of the power of customization [in 10] 

can lead to alternative insight into the nature of voluntary production of software. 

 

An interesting observation regarding OSS applications that are prominent in the academic 

literature (e.g. Apache web server, Linux operating system, MySQL database, Eclipse integrated 

development environment, Tomcat enterprise software environment, etc.) is that these 

applications are, themselves, enablers of software development and deployment 

(http://projects.apache.org/indexes/alpha.html for the listing of >150 Apache applications 

pertinent to software development). Many of the most outstanding OSS successes are of 

primary value to software developers and, as such, those in need of, and those providing, OSS 

solutions are often one in the same. Bessen notes that by 2002 Apache hosted over 60% of the 

active web sites and roughly 50% of commercial firms using Apache had either modified the 

code (19%) or integrated third party Apache products (33%) 10. The apparent ease in which 

software developers, using OSS, can specify their own software requirements that they, 

themselves, subsequently implement is worthy of attention. As a result, an investigation into 

the relevance of business analysis within the context of OSS is warranted. 

http://projects.apache.org/indexes/alpha.html


Concepts in Information and Knowledge Management for Translational Research 

 

 

The challenge of attaining a successful return on investment for software projects remains a 

serious and prominent issue for the software industry 4 13 19. There are many studies that monitor 

software success incorporating a variety of metrics pertinent to the Software Development Life 

Cycle (SDLC). Post-SDLC maintenance and adoption challenges that include distribution, 

training and change management are critically important barriers to software success as end 

users must often transition from well understood and entrenched legacy processes and systems 

to new processes that are typically embodied in new software systems. Although software 

success has generally improved over the past two decades the level of success remains 

disturbingly low as reported by the 2009 revision of the infamous Standish Report 19. 

Figure: Success of software projects taken from the 2009 Standish Report 

 

A 2003 Oxford University report (Saur and Cuthbertson) [in 19] provided more dismal view 

noting only 16% of software projects as successful with 74% challenged and 10% abandoned. 

Jaques (2004) [in 19] noted that software failure costs tens of billions of pounds sterling with a 

22.6B pound spend and a 16% success rate. The National Institute of Standards and 

Technology estimate that defects cost $60B annually with 80% of development costs put 

towards identifying and correcting defects.  

Tata consultancy (2007) 19 noted that:  

• 62% of organizations experienced IT projects that failed to meet their schedules 

• 49% suffered from budget overruns 

• 47% had higher-than-expected maintenance costs 

• 41% failed to deliver the expected business value and ROI 

• 33% file to perform against expectations 

 

In the same year, Sauer, Gemino and Reich published software product abandonment rates at 

9% and over delivery at 7% (Communications of the ACM 2007). Moreover, three out of five 

Information Technology projects fail to deliver for the expected costs with 49% exceeding 

budget, 47% require higher than expected maintenance costs and 41% fail to deliver expected 

business value 19.   

Echoing industry consensus, Robert Lawhorn has highlighted the following aspects of 

software failure related to business analysis 19. 

http://www.galorath.com/index.php/software_maintenance_cost
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1. Poorly defined applications (miscommunication between business and IT) contribute 

to a 66% project failure rate, costing U.S. businesses at least $30 billion every year 

(Forrester Research) 

2. 60% – 80% of project failures can be attributed directly to poor requirements 

gathering, analysis, and management (Meta Group) 

3. 50% are rolled back out of production (Gartner) 

4. 40% of problems are found by end users (Gartner) 

5. 25% – 40% of all spending on projects is wasted as a result of re-work (Carnegie 

Mellon) 

6. Up to 80% of budgets are consumed fixing self-inflicted problems (Dynamic Markets 

Limited 2007 Study) 

 

Further, per IAG consulting 19. 

 

1. Companies with poor business analysis capability will have three times as many 

project failures as successes. 

2. 68% of companies are more likely to have a marginal project or outright failure than 

a success due to the way they approach business analysis. In fact, 50% of this groups’ 

projects were runaway which had any 2 of: 

1. taking over 180% of target time to deliver; 

2. consuming in excess of 160% of estimated budget;  

3. or delivering under 70% of the target required functionality. 

3. Companies pay a premium of as much as 60% on time and budget when they use poor 

requirements practices on their projects. 

4. Over 41% of the IT development budget for software, staff and external professional 

services will be consumed by poor requirements at the average company using 

average analysts versus the optimal organization. 

5. The vast majority of projects surveyed did not utilize sufficient business analysis skill 

to consistently bring projects in on time and budget. The level of competency required 

is higher than that employed within projects for 70% of the companies surveyed. 

 

Some of the preeminent literature referenced in this paper, such as Langlois and Garazarelli 25, 

infers the difficulty in specifying software requirements.  

 

“For large complex software artifacts it may be almost impossible to separate ex-ante all 

interdependencies, so unforeseen coupling between components at later stages (like for 

instance, integrating new and existing modules), may strongly affect the final outcome” 

 

“The most common reason for failure is the emergence of some interdependencies which were 

left out at the beginning, at the time of architecture and interfaces definition.” 

Bessen’s use of the term “complex” to describe OSS as a public good 10 is interesting as self-

emergence is a property associated with complex systems 

[http://en.wikipedia.org/wiki/Complex_system]. It could be inferred that, for large-scale 

software products, requirements beyond those initially envisioned by the original developers 

are apt to naturally emerge and give rise to novel functional trajectories for the software. In 

cases of such emergent functional needs for software, predefinition of requirements would not 

be so much a challenge, it would be practically impossible. 
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Requirements elicitation is generally considered part of the first “scoping” step of the SDLC. 

In classic waterfall project management models 23 31, in which projects progressed linearly 

through scoping, design, build and evaluation phases, large projects were hindered by 

“changing” requirements (i.e. new or modified requirements) that manifested throughout the 

design, build and evaluation phases of the SDLC and forced regressive work that lengthened 

project timelines and led to substantial uncertainty in project planning.  

 

Given the software industry’s acknowledgement that requirements elicitation is a core issue 

that plagues purposeful software delivery 19, it is surprising that the OSS literature appears to 

focus solely on the SLDC design and build phases when trying to reconcile the behavior of 

OSS communities and their individual participants. The aspect of scoping will be explored in 

the context of OSS.  

 

9.2.15 The Nature of Requirements: Pattern Languages 

 

In order to better appreciate the difficulty of requirements scoping for large-scale projects, the 

dialogue will more closely examine a proposed theoretical basis regarding the apparent 

malleability of requirements. The discussion will expand on the inspiration of Christopher 

Alexander, introduced prior, and Alexander’s application of design patterns to problems of 

architecture. 

 

Alexander received the first doctorate in Architecture conferred by Harvard University and his 

dissertation, copyright 1964, is available as a book entitled “Notes on the Synthesis of Form” 1. 

The dissertation used the planning of a rural town in India as a case study for the development 

and prioritization of project requirements 1. Alexander constructed a process that combined a 

simple requirements scoring system with a probabilistic algorithm to automatically generate a 

hierarchical representation of the project’s requirements based on their relative association and 

priority. The intent of the computational process that Alexander developed was to 

deterministically limit the many alternatives inherent in approaching large-scale architecture 

projects by ensuring that high priority requirements were identified and that related, and 

presumably dependent, requirements were explicitly associated such that these could be 

addressed in a concerted manner 1. 

 

Alexander published an influential article in 1966 (“A City is Not a Tree” 2) in which, by the 

author’s interpretation, the notion that requirements can be explicitly described a priori for 

complicated domains, and more explicitly, domains that are evolutionary, is called into question. 

Reviewing examples of the “great” cities, Alexander noted the apparent hierarchical structure 

in the way cities tended to develop districts to support specific interests such as those related 

to commercial, residential and recreational uses. However, on closer inspection of more 

granular derivations of such purpose-based districts, the healthy examples appeared to support 

a diversity of activities (residences within the business and recreational districts, business 
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populating residential areas, etc.). Although city plans appeared to be rooted acyclic directed 

graphs (i.e. a hierarchy or tree) from a high level (district) viewpoint, evaluation of the granular 

structure of districts yielded a lattice of diverse interactions. Essentially, healthy purpose-

oriented districts are comprised of a myriad of granular city elements supporting a variety of 

activities that lead to a distinctive cultural experience. A paucity of granular interaction 

appeared associated with community failure 2. 

 

Moreover, Alexander noted the influence of evolutionary development on successful 

communities. An interpretation being that top-down design is incapable of specifying the 

unique characteristics of successful communities, rather the unique cultural elements emerge 

as the community evolves over time 2. 

 

Expanded to any large-scale project, such as software development, the interpretation is that a 

priori scoping will be challenged to specify the full breadth of project needs as new 

requirements will naturally (appear to) “emerge” as interactions become evident as the project 

proceeds and tangible products begin to materialize 2. Predicting such interactions, while in 

principle not impossible, would require extraordinary foresight in predicting all of the ways in 

which individuals will engage, use and value a complicated product or environment.   

 

Alexander and colleagues produced their seminal work, described above, in 1977, that detailed 

design patterns to address a multitude of architectural problems 3. Design patterns provide 

foundational purpose-driven implementations based on prior successful realizations. Based on 

such prior productive results, well developed patterns naturally address the granular 

interactions that are difficult to predict and specify but are inherent to the problem under 

consideration. The application of patterns applies best practice to address scoping uncertainty. 

 

As noted above, architectural patterns inspired software design patterns as a way of providing 

formal elements of coordination within the context of technical software development 17 20. 

However, of great interest to this author is the exceedingly few, of Alexander’s, patterns that 

are technical in nature 3. Alexander’s design patterns were fundamentally detailed to enhance 

the experience of the human user of the resulting architecture. Circumferences of columns and 

the widths of moldings promote a perception of strength and well-being for the human 

inhabitants rather than simply serving as structural support or protection from moisture damage. 

Designing public spaces toward the main entry of a home promotes human interaction while 

sustaining the necessary element of privacy for the human inhabitants. Architectural Design 

Patterns aim to prevent construction of structurally sufficient dwellings that are shunned by the 

human beings for which occupancy is intended 3. It follows that the originators of software 

design patterns, in developing valuable technical methods for programmers, may have 

misinterpreted the nuance of Alexander’s intent in directing the beneficial outcome of patterns 

to the end user, not the builder. 

 

9.2.16 OSS and Evolutionary Development 

 



Concepts in Information and Knowledge Management for Translational Research 

 

Having developed a basis to explain the difficulties associated with project scoping activities 

in architecture, we can ascribe, as an analogy, the same impediments to software development 

when comparing voluntary production to commercial implementation. Essentially, interactions 

among requirements (i.e. the variety of ways end users might use, or want to use, a system) are 

difficult to specify up-front and, when surfaced, appear to result from poor requirements 

elicitation or poor understanding/articulation of requirements by the end users themselves. One 

aspect that is anticipated to correlate with success is the process of evolutionary development 

and a bottom-up approach characterized by the avoidance overdesign by creating working 

evaluable code early in production. This approach is directly embodied by iterative software 

development methodologies 8. Iterative methodologies are an alternative to traditional 

“waterfall” project management methods 440 that execute the SLDC in a linear sequence with 

project requirements defined up front.  

 

Iterative methodologies build software by introducing new features over time in distinct 

versions 23. In principle, subsequent development efforts become driven by the experience end 

users have with the current software version. User feedback and new or modified requirements 

can be addressed in the subsequent version of the software 23. These methodologies are highly 

advantageous for projects in which subsets of the fully envisioned capabilities are useful. For 

example, an application that intends to search a collection of, say ten, public databases may be 

valuable to a client as soon as one or two databases are made available (version 1). Value 

accrues with the additional databases such that each new database can be implemented 

incrementally and incorporated into a distinct version release of the software. Conversely, 

software supporting a complicated business process may require a comprehensive initial 

implementation to address the target process’ end to end workflow before the software will be 

of value to any end user. 

 

Additionally, there exist software development methodologies that incorporate iterative cycles 

of evolutionary development. Agile software development and project management 

methodologies focus on short term implementations of functionally incomplete, working code 

in order to constrain the SDLC into short sprints that repeat iteratively throughout the course 

of the project 18. Agile development focuses on individuals and interactions over processes and 

tools, working software over comprehensive documentation, customer collaboration over 

contract negotiation, responding to change over following a plan and rapid iterative 

development 18. Requirements that manifest during the execution of an agile project can be 

better accommodated within the sprint structure. Agile projects provide more flexibility in 

implementation at the cost of the perceived certainty in project scope and length 18 that is 

evident with project plans developed for waterfall methods that detail the project from start to 

finish. 

The use of Agile methodologies for software development has been cited as a major step 

forward and could be linked to the relative increase in the number of successful software 

projects (2004 Standish Report).   
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It could be posited that OSS projects, by their very nature, progress in a more evolutionary 

manner. Certainly, modularity and extensibility would promote the evolution of new features. 

Although many OSS projects have a project roadmap of desired capabilities 31, the manner in 

which new participants join (and leave) the team over time, contributing those features that are 

of most personal interest, would further foster a development reality that is evolutionary in 

nature. However, as Agile approaches, and other iterative and prototyping methods, are well 

adopted across software industry, it is not apparent that evolutionary methods distinguish OSS 

from many large-scale commercial efforts. Clearly, commercial software providers are more 

incentivized to develop in a prescriptive manner in order to define and ascertain specific 

financial goals. However, empirical differentiation of OSS and commercial software based on 

evolutionary considerations may be a difficult matter to approach experimentally even if an 

investigator could obtain access to the methodologies of key commercial vendors.  

 

As a final note on evolution, Raymond 31 notes the standard order project management tasks 

are designed for closed source projects: 

1. To define goals and keep everybody pointed in the same direction 

2. To monitor and make sure crucial details don't get skipped 

3. To motivate people to do boring but necessary drudgework 

4. To organize the deployment of people for best productivity 

5. To marshal resources needed to sustain the project 

 

Raymond notes that OSS functions operate in reverse order with goal definition being the last 

of the process. With overarching goals taking shape later, the project has had substantial time 

to incubate incremental modifications and improvements 31. This reverse approach may model 

a viral tipping point where a certain finite level of achievement drives the project to substantial 

success 18. Per Malcolm Gladwell 18, salespeople, mavens (technical experts) and connectors 

(highly connected persons) would be expected to populate the OSS community, driving the 

motivation to carry out the drudgework. Raymond describes Linus Torvalds (Linux originator) 

in terms that can be interpreted as Linus being an exceptional connector and maven 31. 

 

Conversely, the high profile working group reviewing the failure of the ~$350M caBIG (Cancer 

Biomedical Information Grid), that was intended to provide OSS to integrate U.S. cancer 

centers, cited an overly constrained hierarchical chain of command type of organizational 

structure and limited engagement of key opinion leaders 12.  

 

9.2.17 OSS and Software Use Patterns 

 

The spreadsheet below lists the top ten OSS downloaded projects of all time (as of Oct 2012 
34). All, with the possible exception of item eight, have similar predecessor applications 

(commercial or OSS). 
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Within the context of business use patterns, an interesting observation regarding OSS products 

is that many OSS deliveries mimic existing products that are already available. The table below 

includes examples of popular OSS products and their commercial equivalents. The Open Office 

spreadsheet application is practically indistinguishable from Microsoft Excel, GNU/Linux are 

strategic imitations of Unix, the same holds true for a great many popular applications 

(Author’s aggregation). 

 

 
 

The concept of repeated application of pre-existing successful use patterns as a driver of 

subsequent success for projects of similar scope has been detailed. As an example, a courtyard 

pattern that includes the requirement for multiple gates and a view beyond the courtyard area 

can be used for any future courtyard project 3. Although the final designs of these patterns-

based courtyards will be creatively distinct, all will incorporate expansive views and multiple 

gates in an effort to re-create the success of the courtyards that were used to derive the pattern. 
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Many open source products not only have pre-existing commercial products from which to 

derive patterns, the OSS projects often copy, to a high degree, the user interfaces and workflows. 

 

Given the difficulties associated with adopting new software, faithful recreations of common 

interfaces would be a key enabler of user acceptance as the transition costs (in training for 

example) would be greatly reduced in replacing the commercial software with the 

corresponding open source software. Information Protection law generally does not provide 

rights for design elements such as graphical user interfaces [ref]. Therefore, OSS packages 

appear to have an enormous advantage in that the barrier to entry for developing productive 

user experience models, and training clients in the use of these implementations, can be 

practically nonexistent as the above OSS examples serve to illustrate. 

 

9.2.18 Innovation, Evolution and the A Priori Existence of Imitable Products   

 

Christensen 14 proposed the concept of disruptive innovation as a repeatable and predictable 

element associated with the demise of industry-dominant corporations as a consequence of the 

emergence of novel products from fringe competitors. Dominant industry players offering 

leading products and services excel in tailoring these products to meet the stated needs of their 

customers. Product development of this nature, or sustaining innovation, is predicated on 

customer requirements that arise during the product lifecycle. Leading suppliers are well 

positioned to receive and act on these requirements due to their close customer relationships 

and their willingness to invest in these opportunities, which typically lead to increased margins 

for differentiation and enhanced capabilities (i.e. up-market products). Sustaining innovations 

may be incremental or radical 14. However, sustained innovation, by nature, is associated with 

progress along standard metrics of quality and performance. Therefore, sustaining 

improvements, regardless of implementation challenges, are based upon consumer desires that 

are well understood by the dominant suppliers and positioned as premium products and services. 

Moreover, standard financial and marketing methodologies are applicable for predicting return 

on investment in a sustaining scenario. Therefore, sustaining programs for established market 

leading products are highly likely to garner corporate commitment and resources 14. 

Disruptive innovations, by contrast, address non-traditional elements of value 14.  The market 

for consuming disruptive advances is likely small, or undefined, upon product introduction. 

Standard financial and marketing techniques cannot be reliably applied to an undefined market. 

Furthermore, disruptive products are likely to be far inferior, at least initially, relative to the 

established products of major competitors. As such, disruptive ideas are unlikely to attract the 

attention and company resources of dominant market entities given the unpredictable, and 

initially feeble, expectations for performance relative to existing offerings 14. 

The failure of incumbent players faced with disruptive innovation is explained by: 

 

1. Superior product fit for a fringe market that, in time, overtakes and supersedes the prior 

established market. 
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2. Excessive development or performance (over specification) of incumbent products 

such that the disruptive entrant, with continued development, eventually becomes 

competitive (suitably up-market) for traditional customers while delivering fewer 

capabilities in comparison to the incumbent products. The entrant becomes a rival for 

a share in the established market, likely competing at a lower cost. 

 

3. The inability of an incumbent to modify its existing value chain to efficiently produce 

a product or service capable of competing with the disruptive entrant14. 

 

OSS market entrants bear some similarity to disruptive products in that they are generally poor 

performing upon entry relative to the established commercial market players. As an example, 

the highly popular open source database MySQL (the most used relational database 

management system (RDBMS) in the world) [7, http://en.wikipedia.org/wiki/Mysql], which 

has been provided under a discretionary pricing model, free of charge for non-commercial users 

and by paid license for commercial, was originally released, under its name MySQL, in 1998. 

High-level MySQL releases have included: 

• 2004 (R-trees and B-trees, subqueries, prepared statements) 

• 2005 (cursors, stored procedures, triggers, views, XA transactions) 

• 2008 (event scheduler, partitioning, plugin API, row-based replication, server log tables) 

• 2010 InnoDB becomes default storage engine: referential integrity constraints. 

Semisynchronous replication, user-defined partitioning 

[http://en.wikipedia.org/wiki/Mysql] 

These advanced features were generally available in established commercial relational 

database systems, such as Oracle, in 1998. MySQL itself is neither a sustaining nor disruptive 

innovative product per se; however, MySQL’s progress towards being the most used RDBMS 

follows a trajectory similar to that of disruptively innovative products. There was an 

underserved market for a free, or cheaper, RDBMS product that did not require the full 

capabilities of the established commercial RDBMS products.  Established RDBMS vendors 

were not financially incentivized to serve this “down market” customer group interested in 

cheap RDBMSs. This underserved market adopted MySQL in its primitive form. Adoption 

created demand for more advanced features that were added incrementally either by MySQL 

AG, third parties (such as Innobase Oy) and community members. By 2008, MySQL was 

enough of a threat to the established market that Sun Microsystems bought MySQL AG for 

$1B [7, http://en.wikipedia.org/wiki/Mysql]. A year later, Oracle acquired Sun. The traditional 

metrics of technical performance are applicable to MySQL and the established RDBMS 

competitors, such as Oracle. Moreover, MySQL provides a standard user presentation similar 

to existing relational database products. However, MySQL’s discretionary pricing model (free 

for most users) and evolutionary imitation of the incumbent RDBMS products eventually 

secured the product extraordinary distribution in a highly expanded market. 

The combination of user familiarity and favorable pricing set a foundation from which MySQL 

http://en.wikipedia.org/wiki/Mysql
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could develop in an incremental/evolutionary manner and eventually challenge established 

incumbents. The MySQL case can be characterized by: 

1. Superior fit for a fringe market (those in need of a cheap RDBMS having the most basic 

storage features)  

2. Established RDBMS incumbents providing a product far superior to that needed by the 

fringe market 

3. The inability of RDBMS incumbents to provide an equivalently featured RDBMS 

version to challenge MySQL. Offering a capability-limited RDBMS, as a defense 

strategy, would likely not have been deemed financially worthwhile for an incumbent 

such as Oracle. Existing Oracle customers would not accept such a capability-limited 

version. 

 

Eventually, as MySQL acquired greater capabilities, the OSS database became a competing 

product for organizations in need of an RDBMS product that would have otherwise selected 

products from major vendors such as Oracle, IBM or Microsoft. 

 

9.2.19 Discussion 

 

It has been proposed that OSS products supplement commercial offerings in under-serviced 

portions of the software marketplace 10. However, there is ample evidence that OSS products 

challenge some of the most dominant and recognizable commercial software products 9 10 37 23. 

Operating systems (Linux), relational databases (MySQL and postgreSQL) and productivity 

suites (Open Office) are at the core of mammoth open source efforts attracting thousands of 

potential commercial users away from incumbent commercial products 10 31. The motivations 

for OSS contributors have been studied broadly by economists with theories proposed that are 

applicable to individual and industrial contributors 9 30 31 10. There are clear examples of OSS-

driven high-level corporate strategies intended to weaken competitors, such as IBM's 

substantial investment in Linux 36, as well as examples of commercial entities acquiring open 

source product rights (Oracle's acquisition of Sun included rights to the MySQL OSS database 

system for which Oracle now provides fee-based high value additions) 7. Moreover, the use of 

OSS by government entities, a large software customer segment, is rapidly rising with pro-OSS 

policies and legislation gaining traction 10 23. The literature, by and large, does suggest that OSS 

entrants pose serious challenges to incumbent commercial software vendors 10 31 23. Purported 

individual factors for contribution include socio-psychological factors such as status, autonomy, 

mastery and community participation as well as economic potential from supplemental services 

beyond paid licensing such as a business consulting and the provision of support and 

maintenance 30 31 9. 

 

Technical facilitators for OSS participation have also been studied. Modular design coupled 

with heterogeneous module option values have been theorized to promote efficiency of OSS 

product development capable of competing with commercial software production models 9 6. 

Alternatively, voluntary production efforts, such as OSS, have been proposed to arise from a 

combination of individual self-selection (to provide effort) coupled with the acceptance of 
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certain elements of overt control. As such, voluntary production represents a novel hybrid 

model of transactions that possess both elements of markets and firms. Given this hybrid state, 

the likelihood that OSS projects could deliver products in the absence of some level of central 

coordination seems implausible 25. Although the typical OSS project appears to have some 

element of formal central coordination, it is unclear as to what level of authoritative control 

would disrupt the drive for developers to self-identify and participate 25. The author proposes 

that the use of established software design patterns, as a professional best practice, could serve 

to provide a locus of technical control without the encumbrance of personnel oversight and, 

therefore, could serve to lower transaction costs associated with OSS production. 

 

However, empirical evidence that distinguishes OSS production from closed-source 

commercial software production is not definitive 32 34. Quality metrics are not necessarily 

consistent with claims of superiority associated with OSS 31 23 10. The difficulties associated 

with executing statistically relevant comparisons of software quality were discussed and are 

substantial 35. Moreover, the techniques that would be envisioned to promote OSS, such as 

componentized design and iterative/agile development methodologies 8, are applicable and 

widely used across the breadth of largescale software development ventures. Isolating 

distinguishing quality features between OSS vs. closed source initiatives would, in this author’s 

opinion, be exceedingly difficult, even if the underlying information to perform the 

comparisons was readily available. 

 

The author notes that all inquiries into OSS processes focus on the technical components of the 

software development lifecycle such as the manner in which the architecture is designed and 

the code is integrated. Given the software industry’s recognition that requirements elicitation 

appears to be the most serious factor implicated with the failure of software projects 19, it 

seemed prudent to examine whether there are business analytical distinctions between OSS and 

closed source initiatives. The advantages of evolutionary development, for large-scale projects, 

were discussed in the context of architectural patterns theory. That OSS projects are 

evolutionary in practice is of interest but difficult to reconcile as a distinguishing OSS feature. 

However, that many of the most popular OSS projects are able to imitate existing client use 

practices established a-priori by closed-source initiatives is both obvious and compelling. It 

would seem that OSS projects are substantially advantaged by the existence of mature 

corresponding closed-source products having user experience features, such as workflows and 

graphical user interfaces, which have been difficult to protect by existing intellectual property 

law [http://www.patentlyo.com/patent/2013/03/guest-post-what-is-next-in-design-patents-for-

on-screen-icons.html…Apple vs. Samsung]. It will be interesting to see whether the Apple vs. 

Samsung litigation, which recently protected an Apple user interface from infringement, will 

expand to provide commercial originators of a user interface from copy by OSS projects.  

 

The ability for OSS products to imitate existing closed source solutions, while likely an 

important enabler that speeds the development and launch of a usable familiar product, is 

unlikely, by itself, to account for OSS success in the marketplace. OSS products may act 
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somewhat like disruptive innovations 14. If OSS products are able to leverage an unsupported 

market which has been left un-serviced by closed-source incumbents, the OSS product can 

expand this whitespace into a compelling niche market. The niche market, if sizable, interesting 

and important enough, would provide motivation for participation by capable developers. 

Participation would be especially compelling if the developers themselves could reap the 

benefits of the OSS directly, as appears to be the case for many OSS applications that have 

computing professionals as a targeted user group. With initial developer participation, existing 

products to imitate and a fringe customer base, a well architected OSS system based on modular 

or extensible software patterns could be incrementally developed to serve an expanding market. 

Success could result in greater project visibility and financial opportunities for participants 

resulting in sustained product enhancement. Eventually, the OSS would become suitably 

feature rich to compete with the existing up-market vendors for, at least a portion, of their 

customer base. Incumbents could try to compete directly with the OSS product by distributing 

a functionally diluted product for free. However, as with disruptive innovation scenarios, it is 

not likely that the incumbent will anticipate return on investment in supporting a down-market 

free offering and may struggle to compete once the OSS challenger is established in the fringe 

market. Simply, successful OSS appears to follow a disruptive pattern of market emergence 

although the OSS products themselves are not necessarily innovative from the perspective of 

customers.  

 

The author does not discount any prior hypothesis regarding success factors for OSS. However, 

the availability of existing business use patterns, instituted by closed source software, is 

suggested to allow OSS project teams to circumvent the process of business analysis, the 

premier cited source of software project failure 19. By avoiding pitfalls associated with product 

scoping, the OSS team can be in a position to quickly release feature-limited products for a 

core of interested niche users for which existing closed-source vendors cannot service due to 

cost prohibitions. The OSS project establishes a follower strategy for market growth that, in 

cases such as MySQL, Linux, Apache, Eclipse and many others, can eventually challenge the 

corresponding products of premier vendors. 
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Conclusion 

 

Jay Bergeron and Yike Guo 
 

The Innovative Medicines Initiative (IMI), UK Medical Research Council and other European 

-based institutions have funded, and continue to fund, many groundbreaking translational 

research public private partnerships. The IMI envisioned a common information management 

platform that could be used to collect, process and analyse the data generated by these projects 

to reduce the cost of bespoke systems development while greatly facilitating the distribution 

and reuse of these data. The IMI-eTRIKS project, an effort spanning 2012-2018, developed 

and released, under open license, this generalized translational research knowledge 

management platform. Although the platform’s features will need to expand and change over 

time as new research techniques are developed, eTRIKS created a system that has served the 

data handling needs of a great many European projects to date and continues to serve new 

projects through commercial and academic organizations that further develop and apply the 

platform.  This book summarized some of the key practices and considerations associated with 

the challenging, albeit productive and satisfying, journey of creating the eTRIKS platform. The 

content is provided to help inform the perspectives of clinicians and scientists that participate 

in the generation and interpretation of the highly variable and large volume datasets that are 

associated with translational research studies. 

 

In addition to saving the high costs of per-project custom information system development and 

eliminating intellectual property issues via open licensing, the eTRIKS platform also conserves 

the legacy of the transformational datasets being generated by IMI projects and other scientific 

public private partnerships. The eTRIKS platform reduces wasteful, redundant translational 

research investments and promotes a cohesive IMI Translational Medicine informatics 

community. Thus, the eTRIKS common knowledge management platform fosters the full 

realization of IMI project value by diminishing the obstacles to drug and diagnostic 

development caused by heterogeneous data processing and handling.  

 

It is difficult, and likely not desirable, to develop a uniform service to meet the various needs 

of different stakeholders involved in translational research. Rather, building a flexible system 

infrastructure to support a wide range of services capable of addressing the diverse expectations 

of a broad scientific community is the sensible approach. The following groups of stakeholders 

were key to eTRIKS’ development philosophy.   

 

Academic researchers: eTRIKS is a system for managing and sharing traditional medical 

measurements with corresponding molecular biomarker data between scientists who conduct 

clinical research. This collaborative platform enables cross-institutional research. Thus, the 

system supports academic activities such as research process management, interoperability 
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with related systems and innovative analytics approaches that enable biomarker discovery, 

drug response, patient stratification and disease mechanism understanding.  The system 

facilitates the development of new analytic methods to mine translational data, disseminating 

and publishing the results of these investigations. The system is also a vehicle for training the 

scientific community in new analytic methods and data handling standards and techniques.  

Extensible “plug in” workflows allow the platform to evolve to accommodate emerging 

clinical research methods and technologies, such as wearable devices.  The importance of 

usability with respect to clinical researchers was well understood and an essential consideration 

during system design. The Borderline interface was developed to optimize the user experience 

for clinical researchers.   

 

Pharmaceutical industry: The eTRIKS platform is designed to foster collaborative research 

programs involving pharmaceutical companies and academic researchers. An open and capable 

knowledge management platform that can be used with minimal cost by each consortium 

partner speeds the delivery of data to each partner and ensures that all partners have equal 

access to the data during and following the term limits of the partnership. Moreover, such a 

platform can be integrated with the enterprise informatics environments of the commercial 

partners to better facilitate confidential research endeavors involving both collaborative and 

company-proprietary datasets. Data fidelity and security are essential to industry partners and 

the eTRIKS platform benefits from rigorous software engineering and quality control 

processes. 

 

Bioinformatics developers:  Bioinformaticians are driven to develop new analytical and 

processing methods for biomedical data. Consistent open data standards and community-

agreed data formats are critical facilitators to the work of the bioinformatician. Therefore, 

eTRIKS promoted stable data standards, common programmatic interfaces and interoperable 

open technologies.  eTRIKS introduced an open license high performance distributed compute 

engine to accelerate infrastructure-exhaustive bioinformatic research methods. 

 

Data engineers for curation and content management:  Scientific data engineers build 

stable, curated and annotated translational content repositories. However, there are few tools 

and systems that support curation and long-term data management. Scientific data curation has 

essentially been an art practiced manually using only general scripting applications. The 

eTRIKS Harmonization System, a major effort of the eTRIKS project, provides a specialized 

environment to enable efficient scientific curation and content management incorporating well 

established standards, ontologies and meta data management services.  

 

eTRIKS aspired to become the European Translational Research Commons Framework to 

support and enable translational medicine initiatives. eTRIKS provided a generalized 

information environment for scientific knowledge to flourish and for new approaches for the 

prevention, diagnosis, and treatment of disease to evolve, ultimately redefining the way 

biomedical research is translated to better health. eTRIKS developed an infrastructure which 



Concepts in Information and Knowledge Management for Translational Research 

 

enables scientific communities to build, expand and share informatics solutions. It is hoped 

that the reader has gained an appreciation of the nature of translational research data generation, 

analysis and interpretation as well as the critical importance of information management 

infrastructure in enabling the conduct of translational research studies.  

    

Although the eTRIKS project ended in late 2018, closing formally in September 2019, the 

project supported an exceptional number of scientific teams during its tenure. Given the many 

academic and commercial entities that have adopted and continue to apply eTRIKS’ best 

practices, the products and services developed by the many colleagues who participated in the 

eTRIKS consortium will continue to provide value to future collaborative research efforts 

within and outside of the IMI. It is hoped that these information best practices will play a 

crucial role in the mission to alleviate the suffering of patients who are fighting complex and 

chronic diseases. 
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