
Bedtools Documentation
Release 2.17.0

Quinlan lab @ UVa

January 27, 2013

CONTENTS

1 Table of contents 3
1.1 Overview . 3
1.2 Installation . 9
1.3 Quick start . 10
1.4 General usage . 11
1.5 The BEDTools suite . 16
1.6 Example usage . 86
1.7 Advanced usage . 90
1.8 Tips and Tricks . 91
1.9 FAQ . 91
1.10 Related software . 92

2 Brief example 95

3 License 97

4 Acknowledgments 99

5 Mailing list 101

i

ii

Bedtools Documentation, Release 2.17.0

Collectively, the bedtools utilities are a swiss-army knife of tools for a wide-range of genomics analysis tasks. The
most widely-used tools enable genome arithmetic: that is, set theory on the genome. For example, bedtools allows
one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic
file formats such as BAM, BED, GFF/GTF, VCF.

While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisti-
cated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

CONTENTS 1

Bedtools Documentation, Release 2.17.0

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Overview

1.1.1 Background

The development of bedtools was motivated by a need for fast, flexible tools with which to compare large sets of
genomic features. Answering fundamental research questions with existing tools was either too slow or required
modifications to the way they reported or computed their results. We were aware of the utilities on the UCSC Genome
Browser and Galaxy websites, as well as the elegant tools available as part of Jim Kent’s monolithic suite of tools
(“Kent source”). However, we found that the web-based tools were too cumbersome when working with large datasets
generated by current sequencing technologies. Similarly, we found that the Kent source command line tools often
required a local installation of the UCSC Genome Browser. These limitations, combined with the fact that we often
wanted an extra option here or there that wasn’t available with existing tools, led us to develop our own from scratch.
The initial version of bedtools was publicly released in the spring of 2009. The current version has evolved from our
research experiences and those of the scientists using the suite over the last year. The bedtools suite enables one to
answer common questions of genomic data in a fast and reliable manner. The fact that almost all the utilities accept
input from “stdin” allows one to “stream / pipe” several commands together to facilitate more complicated analyses.
Also, the tools allow fine control over how output is reported. The initial version of bedtools supported solely 6-
column BED files. However, we have subsequently added support for sequence alignments in BAM format, as well
as for features in GFF , “blocked” BED format, and VCF format. The tools are quite fast and typically finish in a
matter of a few seconds, even for large datasets. This manual seeks to describe the behavior and available functionality
for each bedtool. Usage examples are scattered throughout the text, and formal examples are provided in the last two
sections, we hope that this document will give you a sense of the flexibility of the toolkit and the types of analyses that
are possible with bedtools. If you have further questions, please join the bedtools discussion group, visit the Usage
Examples on the Google Code site (usage, advanced usage), or take a look at the nascent “Usage From the Wild” page.

1.1.2 Summary of available tools.

bedtools support a wide range of operations for interrogating and manipulating genomic features. The table below
summarizes the tools available in the suite.

Utility Description
annotate Annotate coverage of features from multiple files.
bamtobed Convert BAM alignments to BED (& other) formats.
bamtofastq Convert BAM records to FASTQ records.
bed12tobed6 Breaks BED12 intervals into discrete BED6 intervals.
bedpetobam Convert BEDPE intervals to BAM records.
bedtobam Convert intervals to BAM records.

Continued on next page

3

http://genome.ucsc.edu/FAQ/FAQformat#format1
http://samtools.sourceforge.net/
http://genome.ucsc.edu/FAQ/FAQformat#format3
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

Bedtools Documentation, Release 2.17.0

Table 1.1 – continued from previous page
Utility Description
closest Find the closest, potentially non-overlapping interval.
cluster Cluster (but don’t merge) overlapping/nearby intervals.
complement Extract intervals _not_ represented by an interval file.
coverage Compute the coverage over defined intervals.
expand Replicate lines based on lists of values in columns.
flank Create new intervals from the flanks of existing intervals.
genomecov Compute the coverage over an entire genome.
getfasta Use intervals to extract sequences from a FASTA file.
groupby Group by common cols. & summarize oth. cols. (~ SQL “groupBy”)
igv Create an IGV snapshot batch script.
intersect Find overlapping intervals in various ways.
jaccard Calculate the Jaccard statistic b/w two sets of intervals.
links Create a HTML page of links to UCSC locations.
makewindows Make interval “windows” across a genome.
map Apply a function to a column for each overlapping interval.
maskfasta Use intervals to mask sequences from a FASTA file.
merge Combine overlapping/nearby intervals into a single interval.
multicov Counts coverage from multiple BAMs at specific intervals.
multiinter Identifies common intervals among multiple interval files.
nuc Profile the nucleotide content of intervals in a FASTA file.
overlap Computes the amount of overlap from two intervals.
pairtobed Find pairs that overlap intervals in various ways.
pairtopair Find pairs that overlap other pairs in various ways.
random Generate random intervals in a genome.
reldist Calculate the distribution of relative distances b/w two files.
shuffle Randomly redistrubute intervals in a genome.
slop Adjust the size of intervals.
sort Order the intervals in a file.
subtract Remove intervals based on overlaps b/w two files.
tag Tag BAM alignments based on overlaps with interval files.
unionbedg Combines coverage intervals from multiple BEDGRAPH files.
window Find overlapping intervals within a window around an interval.

1.1.3 Fundamental concepts.

What are genome features and how are they represented?

Throughout this manual, we will discuss how to use bedtools to manipulate, compare and ask questions of genome
“features”. Genome features can be functional elements (e.g., genes), genetic polymorphisms (e.g. SNPs, INDELs,
or structural variants), or other annotations that have been discovered or curated by genome sequencing groups or
genome browser groups. In addition, genome features can be custom annotations that an individual lab or researcher
defines (e.g., my novel gene or variant).

The basic characteristics of a genome feature are the chromosome or scaffold on which the feature “resides”, the base
pair on which the feature starts (i.e. the “start”), the base pair on which feature ends (i.e. the “end”), the strand on
which the feature exists (i.e. “+” or “-“), and the name of the feature if one is applicable.

The two most widely used formats for representing genome features are the BED (Browser Extensible Data) and GFF
(General Feature Format) formats. bedtools was originally written to work exclusively with genome features described
using the BED format, but it has been recently extended to seamlessly work with BED, GFF and VCF files.

4 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Existing annotations for the genomes of many species can be easily downloaded in BED and GFF format from
the UCSC Genome Browser’s “Table Browser” (http://genome.ucsc.edu/cgi-bin/hgTables?command=start) or from
the “Bulk Downloads” page (http://hgdownload.cse.ucsc.edu/downloads.html). In addition, the Ensemble Genome
Browser contains annotations in GFF/GTF format for many species (http://www.ensembl.org/info/data/ftp/index.html)

Overlapping / intersecting features.

Two genome features (henceforth referred to as “features”) are said to overlap or intersect if they share at least one
base in common. In the figure below, Feature A intersects/overlaps Feature B, but it does not intersect/overlap Feature
C.

TODO: place figure here

Comparing features in file “A” and file “B”.

The previous section briefly introduced a fundamental naming convention used in bedtools. Specifically, all bedtools
that compare features contained in two distinct files refer to one file as feature set “A” and the other file as feature set
“B”. This is mainly in the interest of brevity, but it also has its roots in set theory. As an example, if one wanted to
look for SNPs (file A) that overlap with exons (file B), one would use bedtools intersect in the following manner:

bedtools intersect -a snps.bed -b exons.bed

There are two exceptions to this rule: 1) When the “A” file is in BAM format, the “-abam” option must bed used. For
example:

bedtools intersect -abam alignedReads.bam -b exons.bed

And 2) For tools where only one input feature file is needed, the “-i” option is used. For example:

bedtools merge -i repeats.bed

BED starts are zero-based and BED ends are one-based.

bedtools users are sometimes confused by the way the start and end of BED features are represented. Specifically,
bedtools uses the UCSC Genome Browser’s internal database convention of making the start position 0-based and
the end position 1-based: (http://genome.ucsc.edu/FAQ/FAQtracks#tracks1) In other words, bedtools interprets the
“start” column as being 1 basepair higher than what is represented in the file. For example, the following BED feature
represents a single base on chromosome 1; namely, the 1st base:

chr1 0 1 first_base

Why, you might ask? The advantage of storing features this way is that when computing the length of a feature, one
must simply subtract the start from the end. Were the start position 1-based, the calculation would be (slightly) more
complex (i.e. (end-start)+1). Thus, storing BED features this way reduces the computational burden.

GFF starts and ends are one-based.

In contrast, the GFF format uses 1-based coordinates for both the start and the end positions. bedtools is aware of this
and adjusts the positions accordingly. In other words, you don’t need to subtract 1 from the start positions of your GFF
features for them to work correctly with bedtools.

1.1. Overview 5

http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://hgdownload.cse.ucsc.edu/downloads.html
http://www.ensembl.org/info/data/ftp/index.html
http://genome.ucsc.edu/FAQ/FAQtracks#tracks1

Bedtools Documentation, Release 2.17.0

VCF coordinates are one-based.

The VCF format uses 1-based coordinates. As in GFF, bedtools is aware of this and adjusts the positions accordingly.
In other words, you don’t need to subtract 1 from the start positions of your VCF features for them to work correctly
with bedtools.

File B is loaded into memory (most of the time).

Whenever a bedtool compares two files of features, the “B” file is loaded into memory. By contrast, the “A” file is
processed line by line and compared with the features from B. Therefore to minimize memory usage, one should set
the smaller of the two files as the B file. One salient example is the comparison of aligned sequence reads from a
current DNA sequencer to gene annotations. In this case, the aligned sequence file (in BED format) may have tens of
millions of features (the sequence alignments), while the gene annotation file will have tens of thousands of features.
In this case, it is wise to sets the reads as file A and the genes as file B.

Feature files must be tab-delimited.

This is rather self-explanatory. While it is possible to allow BED files to be space-delimited, we have decided to
require tab delimiters for three reasons:

1. By requiring one delimiter type, the processing time is minimized.

2. Tab-delimited files are more amenable to other UNIX utilities.

3. GFF files can contain spaces within attribute columns. This complicates the use of space-delimited files as
spaces must therefore be treated specially depending on the context.

All bedtools allow features to be “piped” via standard input.

In an effort to allow one to combine multiple bedtools and other UNIX utilities into more complicated “pipelines”, all
bedtools allow features to be passed to them via standard input. Only one feature file may be passed to a bedtool via
standard input. The convention used by all bedtools is to set either file A or file B to “stdin” or “-”. For example:

cat snps.bed | bedtools intersect -a stdin -b exons.bed
cat snps.bed | bedtools intersect -a - -b exons.bed

In addition, all bedtools that simply require one main input file (the -i file) will assume that input is coming from
standard input if the -i parameter is ignored. For example, the following are equivalent:

cat snps.bed | bedtools sort -i stdin
cat snps.bed | bedtools sort

Most bedtools write their results to standard output.

To allow one to combine multiple bedtools and other UNIX utilities into more complicated “pipelines”, most bedtools
report their output to standard output, rather than to a named file. If one wants to write the output to a named file, one
can use the UNIX “file redirection” symbol “>” to do so. Writing to standard output (the default):

bedtools intersect -a snps.bed -b exons.bed
chr1 100100 100101 rs233454
chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

Writing to a file:

6 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

bedtools intersect -a snps.bed -b exons.bed > snps.in.exons.bed

cat snps.in.exons.bed
chr1 100100 100101 rs233454
chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

What is a “genome” file?

Some of the bedtools (e.g., genomecov, complement, slop) need to know the size of the chromosomes for the
organism for which your BED files are based. When using the UCSC Genome Browser, Ensemble, or Galaxy, you
typically indicate which species / genome build you are working. The way you do this for bedtools is to create a
“genome” file, which simply lists the names of the chromosomes (or scaffolds, etc.) and their size (in basepairs).
Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):

chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

bedtools includes predefined genome files for human and mouse in the /genomes directory included in
the bedtools distribution. Additionally, the “chromInfo” files/tables available from the UCSC Genome
Browser website are acceptable. For example, one can download the hg19 chromInfo file here:
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz

Paired-end BED files (BEDPE files).

We have defined a new file format (BEDPE) to concisely describe disjoint genome features, such as structural vari-
ations or paired-end sequence alignments. We chose to define a new format because the existing BED block format
(i.e. BED12) does not allow inter-chromosomal feature definitions. Moreover, the BED12 format feels rather bloated
when one want to describe events with only two blocks.

Use “-h” for help with any bedtool.

Rather straightforward. If you use the “-h” option with any bedtool, a full menu of example usage and available
options (when applicable) will be reported.

BED features must not contain negative positions.

bedtools will typically reject BED features that contain negative positions. In special cases, however, BEDPE positions
may be set to -1 to indicate that one or more ends of a BEDPE feature is unaligned.

The start position must be <= to the end position.

bedtools will reject BED features where the start position is greater than the end position.

Headers are allowed in GFF and BED files

bedtools will ignore headers at the beginning of BED and GFF files. Valid header lines begin with a “#” symbol, the
work “track”, or the word “browser”. For example, the following examples are valid headers for BED or GFF files:

1.1. Overview 7

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz

Bedtools Documentation, Release 2.17.0

track name=aligned_read description="Illumina aligned reads”
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

#This is a fascinating dataset
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

browser position chr22:1-20000
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

GZIP support: BED, GFF, VCF, and BEDPE file can be “gzipped”

bedtools will process gzipped BED, GFF, VCF and BEDPE files in the same manner as uncompressed files. Gzipped
files are auto-detected thanks to a helpful contribution from Gordon Assaf.

Support for “split” or “spliced” BAM alignments and “blocked” BED features

As of Version 2.8.0, five bedtools (intersect, coverage, genomecob, bamToBed, and bed12ToBed6) can
properly handle “split”/”spliced” BAM alignments (i.e., having an “N” CIGAR operation) and/or “blocked” BED (aka
BED12) features.

intersect, coverage, and genomecov will optionally handle “split” BAM and/or “blocked” BED by using
the -split option. This will cause intersects or coverage to be computed only for the alignment or feature blocks.
In contrast, without this option, the intersects/coverage would be computed for the entire “span” of the alignment or
feature, regardless of the size of the gaps between each alignment or feature block. For example, imagine you have a
RNA-seq read that originates from the junction of two exons that were spliced together in a mRNA. In the genome,
these two exons happen to be 30Kb apart. Thus, when the read is aligned to the reference genome, one portion of
the read will align to the first exon, while another portion of the read will align ca. 30Kb downstream to the other
exon. The corresponding CIGAR string would be something like (assuming a 76bp read): 30M*3000N*46M. In the
genome, this alignment “spans” 3076 bp, yet the nucleotides in the sequencing read only align “cover” 76bp. Without
the -split option, coverage or overlaps would be reported for the entire 3076bp span of the alignment. However,
with the -split option, coverage or overlaps will only be reported for the portions of the read that overlap the exons
(i.e. 30bp on one exon, and 46bp on the other).

Using the -split option with bamToBed causes “spliced/split” alignments to be reported in BED12 format. Using the
-split option with bed12tobed6 causes “blocked” BED12 features to be reported in BED6 format.

Writing uncompressed BAM output.

When working with a large BAM file using a complex set of tools in a pipe/stream, it is advantageous to pass uncom-
pressed BAM output to each downstream program. This minimizes the amount of time spent compressing and decom-
pressing output from one program to the next. All bedtools that create BAM output (e.g. intersect, window) will
now optionally create uncompressed BAM output using the -ubam option.

1.1.4 Implementation and algorithmic notes.

bedtools was implemented in C++ and makes extensive use of data structures and fundamental algorithms from the
Standard Template Library (STL). Many of the core algorithms are based upon the genome binning algorithm de-
scribed in the original UCSC Genome Browser paper (Kent et al, 2002). The tools have been designed to inherit core

8 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

data structures from central source files, thus allowing rapid tool development and deployment of improvements and
corrections. Support for BAM files is made possible through Derek Barnett’s elegant C++ API called BamTools.

1.2 Installation

bedtools is intended to run in a “command line” environment on UNIX, LINUX and Apple OS X operating systems.
Installing bedtools involves either downloading the source code and compiling it manually, or installing stable
release from package managers such as homebrew (for OS X).

1.2.1 Installing stable releases

Compiling from source via Google Code

Stable, versioned releases of bedtools are made available The following commands will install bedtools in a local
directory on an UNIX or OS X machine. Note that the “<version>” refers to the latest posted version number on
http://bedtools.googlecode.com/.

Note: The bedtools Makefiles utilize the GCC compiler. One should edit the Makefiles accordingly if one wants to
use a different compiler.

$ curl http://bedtools.googlecode.com/files/BEDTools.<version>.tar.gz > BEDTools.tar.gz
$ tar -zxvf BEDTools.tar.gz
$ cd BEDTools-<version>
$ make

At this point, one should copy the binaries in ./bin/ to either usr/local/bin/ or some other repository for com-
monly used UNIX tools in your environment. You will typically require administrator (e.g. “root” or “sudo”) privileges
to copy to usr/local/bin/. If in doubt, contact you system administrator for help.

Installing with package managers

In addition, stable releases of bedtools are also available through package managers such as homebrew (for OS X),
apt-get and yum.

Fedora/Centos. Adam Huffman has created a Red Hat package for bedtools so that one can easily install the latest
release using “yum”, the Fedora package manager. It should work with Fedora 13, 14 and EPEL5/6 (for Centos,
Scientific Linux, etc.).

yum install BEDTools

Debian/Ubuntu. Charles Plessy also maintains a Debian package for bedtools that is likely to be found in its deriva-
tives like Ubuntu. Many thanks to Charles for doing this.

apt-get install bedtools

Homebrew. Carlos Borroto has made BEDTools available on the bedtools package manager for OSX.

brew install bedtools

1.2. Installation 9

http://mxcl.github.com/homebrew/
http://bedtools.googlecode.com/
http://mxcl.github.com/homebrew/

Bedtools Documentation, Release 2.17.0

1.2.2 Development versions

The development version of bedtools is maintained in a Github repository. Bug fixes are addressed in this repository
prior to release, so there may be situations where you will want to use a development version of bedtools prior to its
being promoted to a stable release. One would either clone the repository with git, as follows and then compile the
source code as describe above:

git clone https://github.com/arq5x/bedtools.git

or, one can download the source code as a .zip file using the Github website. Once the zip file is downloaded and
uncompressed with the unzip command, one can compile and install using the instructions above.

1.3 Quick start

1.3.1 Install bedtools

curl http://bedtools.googlecode.com/files/BEDTools.<version>.tar.gz > BEDTools.tar.gz
tar -zxvf BEDTools.tar.gz
cd BEDTools
make
sudo cp bin/* /usr/local/bin/

1.3.2 Use bedtools

Below are examples of typical bedtools usage. Using the “-h” option with any bedtools will report a list of all command
line options.

Report the base-pair overlap between the features in two BED files.

10 Chapter 1. Table of contents

https://www.github.com/arq5x/bedtools

Bedtools Documentation, Release 2.17.0

bedtools intersect -a reads.bed -b genes.bed

Report those entries in A that overlap NO entries in B. Like “grep -v”

bedtools intersect -a reads.bed -b genes.bed

Read BED A from STDIN. Useful for stringing together commands. For example, find genes that overlap LINEs but
not SINEs.

bedtools intersect -a genes.bed -b LINES.bed | \
bedtools intersect -a stdin -b SINEs.bed

Find the closest ALU to each gene.

bedtools closest -a genes.bed -b ALUs.bed

Merge overlapping repetitive elements into a single entry, returning the number of entries merged.

bedtools merge -i repeatMasker.bed -n

Merge nearby repetitive elements into a single entry, so long as they are within 1000 bp of one another.

bedtools merge -i repeatMasker.bed -d 1000

1.4 General usage

1.4.1 Supported file formats

BED format

As described on the UCSC Genome Browser website (see link below), the BED format is a concise and flexible way
to represent genomic features and annotations. The BED format description supports up to 12 columns, but only
the first 3 are required for the UCSC browser, the Galaxy browser and for bedtools. bedtools allows one to use the
“BED12” format (that is, all 12 fields listed below). However, only intersectBed, coverageBed, genomeCoverageBed,
and bamToBed will obey the BED12 “blocks” when computing overlaps, etc., via the “-split” option. For all other
tools, the last six columns are not used for any comparisons by the bedtools. Instead, they will use the entire span
(start to end) of the BED12 entry to perform any relevant feature comparisons. The last six columns will be reported
in the output of all comparisons.

The file description below is modified from: http://genome.ucsc.edu/FAQ/FAQformat#format1.

1. chrom - The name of the chromosome on which the genome feature exists.

• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

• This column is required.

2. start - The zero-based starting position of the feature in the chromosome.

• The first base in a chromosome is numbered 0.

• The start position in each BED feature is therefore interpreted to be 1 greater than the start position listed in
the feature. For example, start=9, end=20 is interpreted to span bases 10 through 20,inclusive.

• This column is required.

3. end - The one-based ending position of the feature in the chromosome.

• The end position in each BED feature is one-based. See example above.

1.4. General usage 11

http://genome.ucsc.edu/FAQ/FAQformat#format1

Bedtools Documentation, Release 2.17.0

• This column is required.

4. name - Defines the name of the BED feature.

• Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or “my_Feature”.

• This column is optional.

5. score - The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However, bedtools
allows any string to be stored in this field in order to allow greater flexibility in annotation features. For example,
strings allow scientific notation for p-values, mean enrichment values, etc. It should be noted that this flexibility
could prevent such annotations from being correctly displayed on the UCSC browser.

• Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”, “down”, etc.

• This column is optional.

6. strand - Defines the strand - either ‘+’ or ‘-‘.

• This column is optional.

7. thickStart - The starting position at which the feature is drawn thickly.

• Allowed yet ignored by bedtools.

8. thickEnd - The ending position at which the feature is drawn thickly.

• Allowed yet ignored by bedtools.

9. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0).

• Allowed yet ignored by bedtools.

10. blockCount - The number of blocks (exons) in the BED line.

• Allowed yet ignored by bedtools.

11. blockSizes - A comma-separated list of the block sizes.

• Allowed yet ignored by bedtools.

12. blockStarts - A comma-separated list of block starts.

• Allowed yet ignored by bedtools.

bedtools requires that all BED input files (and input received from stdin) are tab-delimited. The following types of
BED files are supported by bedtools:

1. BED3: A BED file where each feature is described by chrom, start, and end.
For example: chr1 11873 14409

2. BED4: A BED file where each feature is described by chrom, start, end, and name.
For example: chr1 11873 14409 uc001aaa.3

3. BED5: A BED file where each feature is described by chrom, start, end, name, and score.
For example: chr1 11873 14409 uc001aaa.3 0

4. BED6: A BED file where each feature is described by chrom, start, end, name, score, and strand.
For example: chr1 11873 14409 uc001aaa.3 0 +

5. BED12: A BED file where each feature is described by all twelve columns listed above.
For example: chr1 11873 14409 uc001aaa.3 0 + 11873
11873 0 3 354,109,1189, 0,739,1347,

12 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

BEDPE format

We have defined a new file format (BEDPE) in order to concisely describe disjoint genome features, such as structural
variations or paired-end sequence alignments. We chose to define a new format because the existing “blocked” BED
format (a.k.a. BED12) does not allow inter-chromosomal feature definitions. In addition, BED12 only has one strand
field, which is insufficient for paired-end sequence alignments, especially when studying structural variation.

The BEDPE format is described below. The description is modified from:
http://genome.ucsc.edu/FAQ/FAQformat#format1.

1. chrom1 - The name of the chromosome on which the first end of the feature exists.

• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

• This column is required.

• Use ”.” for unknown.

2. start1 - The zero-based starting position of the first end of the feature on chrom1.

• The first base in a chromosome is numbered 0.

• As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater than the
start position listed in the feature. This column is required.

• Use -1 for unknown.

3. end1 - The one-based ending position of the first end of the feature on chrom1.

• The end position in each BEDPE feature is one-based.

• This column is required.

• Use -1 for unknown.

4. chrom2 - The name of the chromosome on which the second end of the feature exists.

• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

• This column is required.

• Use ”.” for unknown.

5. start2 - The zero-based starting position of the second end of the feature on chrom2.

• The first base in a chromosome is numbered 0.

• As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater than the
start position listed in the feature. This column is required.

• Use -1 for unknown.

6. end2 - The one-based ending position of the second end of the feature on chrom2.

• The end position in each BEDPE feature is one-based.

• This column is required.

• Use -1 for unknown.

7. name - Defines the name of the BEDPE feature.

• Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or “my_Feature”.

• This column is optional.

1.4. General usage 13

http://genome.ucsc.edu/FAQ/FAQformat#format1

Bedtools Documentation, Release 2.17.0

8. score - The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However, bedtools
allows any string to be stored in this field in order to allow greater flexibility in annotation features. For
example, strings allow scientific notation for p-values, mean enrichment values, etc. It should be noted that this
flexibility could prevent such annotations from being correctly displayed on the UCSC browser.

• Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”, “down”, etc.

• This column is optional.

9. strand1 - Defines the strand for the first end of the feature. Either ‘+’ or ‘-‘.

• This column is optional.

• Use ”.” for unknown.

10. strand2 - Defines the strand for the second end of the feature. Either ‘+’ or ‘-‘.

• This column is optional.

• Use ”.” for unknown.

11. Any number of additional, user-defined fields - bedtools allows one to add as many additional fields to the
normal, 10-column BEDPE format as necessary. These columns are merely “passed through” pairToBed and
pairToPair and are not part of any analysis. One would use these additional columns to add extra information
(e.g., edit distance for each end of an alignment, or “deletion”, “inversion”, etc.) to each BEDPE feature.

• These additional columns are optional.

Entries from an typical BEDPE file:

chr1 100 200 chr5 5000 5100 bedpe_example1 30 + -
chr9 1000 5000 chr9 3000 3800 bedpe_example2 100 + -

Entries from a BEDPE file with two custom fields added to each record:

chr1 10 20 chr5 50 60 a1 30 + - 0 1
chr9 30 40 chr9 80 90 a2 100 + - 2 1

GFF format

The GFF format is described on the Sanger Institute’s website (http://www.sanger.ac.uk/resources/software/gff/spec.html).
The GFF description below is modified from the definition at this URL. All nine columns in the GFF format description
are required by bedtools.

1. seqname - The name of the sequence (e.g. chromosome) on which the feature exists.

• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

• This column is required.

2. source - The source of this feature. This field will normally be used to indicate the program making the predic-
tion, or if it comes from public database annotation, or is experimentally verified, etc.

• This column is required.

3. feature - The feature type name. Equivalent to BED’s name field.

• Any string can be used. For example, “exon”, etc.

• This column is required.

4. start - The one-based starting position of feature on seqname.

• This column is required.

14 Chapter 1. Table of contents

http://www.sanger.ac.uk/resources/software/gff/spec.html

Bedtools Documentation, Release 2.17.0

• bedtools accounts for the fact the GFF uses a one-based position and BED uses a zero-based start position.

5. end - The one-based ending position of feature on seqname.

• This column is required.

6. score - A score assigned to the GFF feature. Like BED format, bedtools allows any string to be stored in this
field in order to allow greater flexibility in annotation features. We note that this differs from the GFF definition
in the interest of flexibility.

• This column is required.

7. strand - Defines the strand. Use ‘+’, ‘-‘ or ‘.’

• This column is required.

8. frame - The frame of the coding sequence. Use ‘0’, ‘1’, ‘2’, or ‘.’.

• This column is required.

9. attribute - Taken from http://www.sanger.ac.uk/resources/software/gff/spec.html: From version 2 onwards, the
attribute field must have an tag value structure following the syntax used within objects in a .ace file, flattened
onto one line by semicolon separators. Tags must be standard identifiers ([A-Za-z][AZa-z0-9_]*). Free text
values must be quoted with double quotes. Note: all non-printing characters in such free text value strings (e.g.
newlines, tabs, control characters, etc) must be explicitly represented by their C (UNIX) style backslash-escaped
representation (e.g. newlines as ‘n’, tabs as ‘t’). As in ACEDB, multiple values can follow a specific tag. The
aim is to establish consistent use of particular tags, corresponding to an underlying implied ACEDB model if
you want to think that way (but acedb is not required).

• This column is required.

An entry from an example GFF file :

seq1 BLASTX similarity 101 235 87.1 + 0 Target "HBA_HUMAN" 11 55 ;
E_value 0.0003 dJ102G20 GD_mRNA coding_exon 7105 7201 . - 2 Sequence
"dJ102G20.C1.1"

Genome file format

Some of the bedtools (e.g., genomeCoverageBed, complementBed, slopBed) need to know the size of the chromo-
somes for the organism for which your BED files are based. When using the UCSC Genome Browser, Ensemble, or
Galaxy, you typically indicate which which species/genome build you are working. The way you do this for bedtools
is to create a “genome” file, which simply lists the names of the chromosomes (or scaffolds, etc.) and their size (in
basepairs).

Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):

chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

bedtools includes pre-defined genome files for human and mouse in the /genomes directory included in the bedtools
distribution.

SAM/BAM format

The SAM / BAM format is a powerful and widely-used format for storing sequence alignment data (see
http://samtools.sourceforge.net/ for more details). It has quickly become the standard format to which most DNA

1.4. General usage 15

http://www.sanger.ac.uk/resources/software/gff/spec.html
http://samtools.sourceforge.net/

Bedtools Documentation, Release 2.17.0

sequence alignment programs write their output. Currently, the following bedtools support input in BAM format:
intersect, window, coverage, genomecov, pairtobed, bamtobed. Support for the BAM format in bed-
tools allows one to (to name a few): compare sequence alignments to annotations, refine alignment datasets, screen
for potential mutations and compute aligned sequence coverage.

VCF format

The Variant Call Format (VCF) was conceived as part of the 1000 Genomes Project as a standardized
means to report genetic variation calls from SNP, INDEL and structural variant detection programs (see
http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0 for details). bedtools now supports
the latest version of this format (i.e, Version 4.0). As a result, bedtools can be used to compare genetic variation calls
with other genomic features.

1.5 The BEDTools suite

bedtools consists of a suite of sub-commands that are invoked as follows:

bedtools [sub-command] [options]

For example, to intersect two BED files, one would invoke the following:

bedtools intersect -a a.bed -b b.bed

1.5.1 The full list of bedtools sub-commands.

annotate

bedtools annotate, well, annotates one BED/VCF/GFF file with the coverage and number of overlaps observed
from multiple other BED/VCF/GFF files. In this way, it allows one to ask to what degree one feature coincides with
multiple other feature types with a single command.

Usage and option summary

Usage:

bedtools annotate [OPTIONS] -i <BED/GFF/VCF> -files FILE1 FILE2 FILE3 ... FILEn

(or):

annotateBed [OPTIONS] -i <BED/GFF/VCF> -files FILE1 FILE2 FILE3 ... FILEn

16 Chapter 1. Table of contents

http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0

Bedtools Documentation, Release 2.17.0

Op-
tion

Description

-
names

A list of names (one per file) to describe each file in -i. These names will be printed as a header line.

-
counts

Report the count of features in each file that overlap -i. Default behavior is to report the fraction of -i
covered by each file.

-both Report the count of features followed by the % coverage for each annotation file. Default is to report
solely the fraction of -i covered by each file.

-s Force strandedness. That is, only include hits in A that overlap B on the same strand. By default, hits are
included without respect to strand.

-S Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By
default, overlaps are reported without respect to strand.

Default behavior - annotate one file with coverage from others.

By default, the fraction of each feature covered by each annotation file is reported after the complete feature in the file
to be annotated.

$ cat variants.bed
chr1 100 200 nasty 1 -
chr2 500 1000 ugly 2 +
chr3 1000 5000 big 3 -

$ cat genes.bed
chr1 150 200 geneA 1 +
chr1 175 250 geneB 2 +
chr3 0 10000 geneC 3 -

$ cat conserve.bed
chr1 0 10000 cons1 1 +
chr2 700 10000 cons2 2 -
chr3 4000 10000 cons3 3 +

$ cat known_var.bed
chr1 0 120 known1 -
chr1 150 160 known2 -
chr2 0 10000 known3 +

$ bedtools annotate -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.500000 1.000000 0.300000
chr2 500 1000 ugly 2 + 0.000000 0.600000 1.000000
chr3 1000 5000 big 3 - 1.000000 0.250000 0.000000

-count Report the count of hits from the annotation files

$ bedtools annotate -counts -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 2 1 2
chr2 500 1000 ugly 2 + 0 1 1
chr3 1000 5000 big 3 - 1 1 0

1.5. The BEDTools suite 17

Bedtools Documentation, Release 2.17.0

-both Report both the count of hits and the fraction covered from the annotation files

$ bedtools annotate -both -i variants.bed -files genes.bed conserve.bed known_var.bed
#chr start end name score +/- cnt1 pct1 cnt2 pct2 cnt3 pct3
chr1 100 200 nasty 1 - 2 0.500000 1 1.000000 2 0.300000
chr2 500 1000 ugly 2 + 0 0.000000 1 0.600000 1 1.000000
chr3 1000 5000 big 3 - 1 1.000000 1 0.250000 0 0.000000

-s Restrict the reporting to overlaps on the same strand.

$ bedtools annotate -s -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.000000 0.000000 0.000000
chr2 500 1000 ugly 2 + 0.000000 0.000000 0.000000
chr3 1000 5000 big 3 - 1.000000 0.000000 0.000000

-S Restrict the reporting to overlaps on the opposite strand.

$ bedtools annotate -S -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.500000 1.000000 0.300000
chr2 500 1000 ugly 2 + 0.000000 0.600000 1.000000
chr3 1000 5000 big 3 - 0.000000 0.250000 0.000000

bamtobed

bedtools bamtobed is a conversion utility that converts sequence alignments in BAM format into BED, BED12,
and/or BEDPE records.

Usage and option summary

Usage:

bedtools bamtobed [OPTIONS] -i <BAM>

(or):

bamToBed [OPTIONS] -i <BAM>

18 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Option Description
-bedpe Write BAM alignments in BEDPE format. Only one align-

ment from paired-end reads will be reported. Specifically,
it each mate is aligned to the same chromosome, the BAM
alignment reported will be the one where the BAM insert
size is greater than zero. When the mate alignments are inter-
chromosomal, the lexicographically lower chromosome will
be reported first. Lastly, when an end is unmapped, the chro-
mosome and strand will be set to ”.” and the start and end
coordinates will be set to -1. By default, this is disabled and
the output will be reported in BED format.

-bed12 Write “blocked” BED (a.k.a. BED12) format. This will con-
vert “spliced” BAM alignments (denoted by the “N” CIGAR
operation) to BED12.

-split Report each portion of a “split” BAM (i.e., having an “N”
CIGAR operation) alignment as a distinct BED intervals.

-ed Use the “edit distance” tag (NM) for the BED score field. De-
fault for BED is to use mapping quality. Default for BEDPE
is to use the minimum of the two mapping qualities for the
pair. When -ed is used with -bedpe, the total edit distance
from the two mates is reported.

-tag Use other numeric BAM alignment tag for BED score. De-
fault for BED is to use mapping quality. Disallowed with
BEDPE output.

-color An R,G,B string for the color used with BED12 format. De-
fault is (255,0,0).

-cigar Add the CIGAR string to the BED entry as a 7th column.

Default behavior

By default, each alignment in the BAM file is converted to a 6 column BED. The BED “name” field is comprised of
the RNAME field in the BAM alignment. If mate information is available, the mate (e.g., “/1” or “/2”) field will be
appended to the name.

$ bedtools bamtobed -i reads.bam | head -3
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 37 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 37 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 37 -

-tag Set the score field based on BAM tags

One can override the choice of the BAM MAPQ as the result BED record’s score field by using the -tag option. In
the example below, we use the -tag option to select the BAM edit distance (the NM tag) as the score column in the
resulting BED records.

$ bedtools bamtobed -i reads.bam -tag NM | head -3
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 1 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 3 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 1 -

1.5. The BEDTools suite 19

Bedtools Documentation, Release 2.17.0

-bedpe Set the score field based on BAM tags

The -bedpe option converts BAM alignments to BEDPE format, thus allowing the two ends of a paired-end align-
ment to be reported on a single text line. Specifically, it each mate is aligned to the same chromosome, the BAM
alignment reported will be the one where the BAM insert size is greater than zero. When the mate alignments are
interchromosomal, the lexicographically lower chromosome will be reported first. Lastly, when an end is unmapped,
the chromosome and strand will be set to ”.” and the start and end coordinates will be set to -1.

Note: When using this option, it is required that the BAM file is sorted/grouped by the read name. This allows
bamToBed to extract correct alignment coordinates for each end based on their respective CIGAR strings. It also
assumes that the alignments for a given pair come in groups of twos. There is not yet a standard method for reporting
multiple alignments using BAM. bamToBed will fail if an aligner does not report alignments in pairs.

$ bedtools bamtobed -i reads.ba -bedpe | head -3
chr7 118965072 118965122 chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0 37 + -
chr11 46765606 46765656 chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0 37 + -
chr20 54704674 54704724 chr20 54708987 54709037 TUPAC_0001:3:1:1:1833#0 37 +

One can easily use samtools and bamToBed together as part of a UNIX pipe. In this example, we will only convert
properly-paired (FLAG == 0x2) reads to BED format.

$ samtools view -bf 0x2 reads.bam | bedtools bamtobed -i stdin | head
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 37 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 37 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 37 -
chr11 46765606 46765656 TUPAC_0001:3:1:0:1472#0/2 37 +
chr20 54704674 54704724 TUPAC_0001:3:1:1:1833#0/1 37 +
chr20 54708987 54709037 TUPAC_0001:3:1:1:1833#0/2 37 -
chrX 9380413 9380463 TUPAC_0001:3:1:1:285#0/1 0 -
chrX 9375861 9375911 TUPAC_0001:3:1:1:285#0/2 0 +
chrX 131756978 131757028 TUPAC_0001:3:1:2:523#0/1 37 +
chrX 131761790 131761840 TUPAC_0001:3:1:2:523#0/2 37 -

-split Creating BED12 features from “spliced” BAM entries.

bedtools bamtobed will, by default, create a BED6 feature that represents the entire span of a spliced/split BAM
alignment. However, when using the -split command, a BED12 feature is reported where BED blocks will be
created for each aligned portion of the sequencing read.

Chromosome ~~

Exons *************** **********

BED/BAM A ^^^^^^^^^^^^....................................^^^^

Result =============== ====

bamtofastq

bedtools bamtofastq is a conversion utility for extracting FASTQ records from sequence alignments in BAM
format.

20 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Usage and option summary

Usage:

bedtools bamtofastq [OPTIONS] -i <BAM> -fq <FASTQ>

(or):

bamToFastq [OPTIONS] -i <BAM> -fq <FASTQ>

Option Description
-fq2 FASTQ for second end. Used if BAM contains paired-

end data. BAM should be sorted by query name
(samtools sort -n aln.bam aln.qsort) if cre-
ating paired FASTQ with this option.

-tags Create FASTQ based on the mate info in the BAM R2 and
Q2 tags.

Default behavior

By default, each alignment in the BAM file is converted to a FASTQ record in the -fq file. The order of the records
in the resulting FASTQ exactly follows the order of the records in the BAM input file.

$ bedtools bamtofastq -i NA18152.bam -fq NA18152.fq

$ head -8 NA18152.fq
@NA18152-SRR007381.35051
GGAGACATATCATATAAGTAATGCTAGGGTGAGTGGTAGGAAGTTTTTTCATAGGAGGTGTATGAGTTGGTCGTAGCGGAATCGGGGGTATGCTGTTCGAATTCATAAGAACAGGGAGGTTAGAAGTAGGGTCTTGGTGACAAAATATGTTGTATAGAGTTCAGGGGAGAGTGCGTCATATGTTGTTCCTAGGAAGATTGTAGTGGTGAGGGTGTTTATTATAATAATGTTTGTGTATTCGGCTATGAAGAATAGGGCGAAGGGGCCTGCGGCGTATTCGATGTTGAAGCCTGAGACTAGTTCGGACTCCCCTTCGGCAAGGTCGAA
+
<<<;;<;<;;<;;;;;;;;;;;;<<<:;;;;;;;;;;;;;;;;::::::;;;;<<;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<;;;<<;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<;;;;;;;;;;<<<<<<<<;;;;;;;;;:;;;;;;;;;;;;;;;;;;;:;;;;8;;8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;8966689666666299866669:899
@NA18152-SRR007381.637219
AATGCTAGGGTGAGTGGTAGGAAGTTTTTTCATAGGAGGTGTATGAGTTGGTCGTAGCGGAATCGGGGGTATGCTGTTCGAATTCATAAGAACAGGGAGGTTAGAAGTAGGGTCTTGGTGACAAAATATGTTGTATAGAGTTCAGGGGAGAGTGCGTCATATGTTGTTCCTAGGAAGATTGTAGTGGTGAGGGTGTTTATTATAATAATGTTTGTGTATTCGGCTATGAAGAATAGGGCGAAGGGGCCTGCGGCGTATTCGATGTTGAAGCCTGAGACTAGTTCGGACTCCCCTTCCGGCAAGGTCGAA
+
<<<<<<<<<<;;<;<;;;;<<;<888888899<;;;;;;<;;;;;;;;;;;;;;;;;;;;;;;;<<<<<;;;;;;;;;<;<<<<<;;;;;;;;;;;;;<<<<;;;;;;;:::;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<;;;;;;;;;;;;;;;;;;;;;;;<;;;;;;;;;;;;;;;;;;;;;;<888<;<<;;;;<<<<<<;;;;;<<<<<<<<;;;;;;;;;:;;;;888888899:::;;8;;;;;;;;;;;;;;;;;;;99;;99666896666966666600;96666669966

-fq2 Creating two FASTQ files for paired-end sequences.

If your BAM alignments are from paired-end sequence data, one can use the -fq2 option to create two distinct FASTQ
output files — one for end 1 and one for end 2.

Note: When using this option, it is required that the BAM file is sorted/grouped by the read name. This keeps the
resulting records in the two output FASTQ files in the same order. One can sort the BAM file by query name with
samtools sort -n aln.bam aln.qsort.

$ samtools sort -n aln.bam aln.qsort

$ bedtools bamtofastq -i aln.qsort.bam \
-fq aln.end1.fq \
-fq2 aln.end2.fq

$ head -8 aln.end1.fq
@SRR069529.2276/1
CAGGGAGAAGGAGGTAGGAAAGAGAAAGGACCAGGGAGGGGCGCATACACAGGACGCTCCGTGCGGTGATAGCAGCACCACACTGTGTTCAGTCGTCTGGC
+

1.5. The BEDTools suite 21

Bedtools Documentation, Release 2.17.0

=;@>==###
@SRR069529.2406/1
GCTGGGAAAAGGATTCAGGATGTTGGTTTCTATCTTTGAGTTGCTGCTGTGCGGCTGTCCCTACACTCGCAGTACCCCTCGGACACCGTCTACTGTGGAGG
+
=5@><<:?<?

$ head -8 aln.end2.fq
@SRR069529.2276/2
AGACCCAGAGAGGGACAGGATCTGTCCCAGATCATAAAATAGGGGGAGTGCTCCGTAGAGGCGTGCGCGGTGGCACCGTGCAGTAGTACGGGTGAGCGGGG
+
###
@SRR069529.2406/2
TTCCCTACCCCTGGGGTCAGGGACTACAGCCAAGGGGAGAACTTTAGCAAGTAGACGTTAGTTATTTTGATTCCAGTGGGGACGCGCGTGTAGCGAGTTGT
+
@>=AABB?AAACABBA>@?AAAA>B@@AB@AA:B@AA@??###

bed12tobed6

bed12ToBed6 is a convenience tool that converts BED features in BED12 (a.k.a. “blocked” BED features such as
genes) to discrete BED6 features. For example, in the case of a gene with six exons, bed12ToBed6 would create six
separate BED6 features (i.e., one for each exon).

Usage and option summary

Usage:

bed12ToBed6 [OPTIONS] -i <BED12>

Option Description
-i The BED12 file that should be split into discrete BED6 features. Use “stdin” when using piped input.

Default behavior

Figure:

head data/knownGene.hg18.chr21.bed | tail -n 3
chr21 10079666 10120808 uc002yiv.1 0 - 10081686 1 0 1 2 0 6 0 8

0 4 528,91,101,215, 0,1930,39750,40927,
chr21 10080031 10081687 uc002yiw.1 0 - 10080031 1 0 0 8 0 0 3 1

0 2 200,91, 0,1565,
chr21 10081660 10120796 uc002yix.2 0 - 10081660 1 0 0 8 1 6 6 0

0 3 27,101,223,0,37756,38913,

head data/knownGene.hg18.chr21.bed | tail -n 3 | bed12ToBed6 -i stdin
chr21 10079666 10080194 uc002yiv.1 0 -
chr21 10081596 10081687 uc002yiv.1 0 -
chr21 10119416 10119517 uc002yiv.1 0 -
chr21 10120593 10120808 uc002yiv.1 0 -
chr21 10080031 10080231 uc002yiw.1 0 -
chr21 10081596 10081687 uc002yiw.1 0 -
chr21 10081660 10081687 uc002yix.2 0 -
chr21 10119416 10119517 uc002yix.2 0 -
chr21 10120573 10120796 uc002yix.2 0 -

22 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

bedpetobam

bedtobam

bedToBam converts features in a feature file to BAM format. This is useful as an efficient means of storing large
genome annotations in a compact, indexed format for visualization purposes.

Usage and option summary

Usage:

bedToBam [OPTIONS] -i <BED/GFF/VCF> -g <GENOME> > <BAM>

Op-
tion

Description

-
mapq

Set a mapping quality (SAM MAPQ field) value for all BED entries. Default: 255

-
ubam

Write uncompressed BAM output. The default is write compressed BAM output.

-
bed12

Indicate that the input BED file is in BED12 (a.k.a “blocked” BED) format. In this case, bedToBam will
convert blocked BED features (e.g., gene annotaions) into “spliced” BAM alignments by creating an
appropriate CIGAR string.

Default behavior

The default behavior is to assume that the input file is in unblocked format. For example:

head -5 rmsk.hg18.chr21.bed
chr21 9719768 9721892 ALR/Alpha 1004 +
chr21 9721905 9725582 ALR/Alpha 1010 +
chr21 9725582 9725977 L1PA3 3288 +
chr21 9726021 9729309 ALR/Alpha 1051 +
chr21 9729320 9729809 L1PA3 3897 -

bedToBam -i rmsk.hg18.chr21.bed -g human.hg18.genome > rmsk.hg18.chr21.bam

samtools view rmsk.hg18.chr21.bam | head -5
ALR/Alpha 0 chr21 9719769 255 2124M * 0 0 * *
ALR/Alpha 0 chr21 9721906 255 3677M * 0 0 * *
L1PA3 0 chr21 9725583 255 395M * 0 0 * *
ALR/Alpha 0 chr21 9726022 255 3288M * 0 0 * *
L1PA3 16 chr21 9729321 255 489M * 0 0 * *

Creating “spliced” BAM entries from “blocked” BED features

Optionally, bedToBam will create spliced BAM entries from “blocked” BED features by using the -bed12 option. This
will create CIGAR strings in the BAM output that will be displayed as “spliced” alignments. The image illustrates
this behavior, as the top track is a BAM representation (using bedToBam) of a BED file of UCSC genes.

For example:

bedToBam -i knownGene.hg18.chr21.bed -g human.hg18.genome -bed12 > knownGene.bam

samtools view knownGene.bam | head -2

1.5. The BEDTools suite 23

Bedtools Documentation, Release 2.17.0

uc002yip.1 16 chr21 9928614 2 5 5

298M1784N71M1411N93M3963N80M1927N106M3608N81M1769N62M11856N89M98N82M816N61M6910N65M
738N64M146N100M1647N120M6478N162M1485N51M6777N60M9274N54M880N54M1229N54M2377N54M112
68N58M2666N109M2885N158M * 0 0 * *
uc002yiq.1 16 chr21 9928614 2 5 5

298M1784N71M1411N93M3963N80M1927N106M3608N81M1769N62M11856N89M98N82M816N61M6910N65M
738N64M146N100M1647N120M6478N162M1485N51M6777N60M10208N54M1229N54M2377N54M11268N58M
2666N109M2885N158M * 0 0 * *

closest

Similar to intersectBed, closestBed searches for overlapping features in A and B. In the event that no feature in B
overlaps the current feature in A, closestBed will report the closest (that is, least genomic distance from the start
or end of A) feature in B. For example, one might want to find which is the closest gene to a significant GWAS
polymorphism. Note that closestBed will report an overlapping feature as the closest—that is, it does not restrict to
closest non-overlapping feature.

5.6.1 Usage and option summary

Usage:

closestBed [OPTIONS] -a <BED/GFF/VCF> -b <BED/GFF/VCF>

Option Description
-s Force strandedness. That is, find the closest feature in

B overlaps A on the same strand. By default, this is
disabled.

-d In addition to the closest feature in B, report its distance
to A as an extra column. The reported distance for over-
lapping features will be 0.

-t How ties for closest feature should be handled. This
occurs when two features in B have exactly the same
overlap with a feature in A. By default, all such features
in B are reported.

Here are the other choices controlling how
ties are handled:
all- Report all ties (default).
first- Report the first tie that occurred in the
B file.
last- Report the last tie that occurred in the
B file.

Default behavior

closestBed first searches for features in B that overlap a feature in A. If overlaps are found, the feature in B that
overlaps the highest fraction of A is reported. If no overlaps are found, closestBed looks for the feature in B that is
closest (that is, least genomic distance to the start or end of A) to A. For example, in the figure below, feature B1
would be reported as the closest feature to A1.

24 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Chromosome ~~

BED FILE A *************

BED File B ^^^^^^^^ ^^^^^^

Result ======

For example:

cat A.bed
chr1 100 200

cat B.bed
chr1 500 1000
chr1 1300 2000

closestBed -a A.bed -b B.bed
chr1 100 200 chr1 500 1000

-s Enforcing “strandedness”

This option behaves the same as the -s option for intersectBed while scanning for the closest (overlapping or not)
feature in B. See the discussion in the intersectBed section for details.

-t Controlling how ties for “closest” are broken

When there are two or more features in B that overlap the same fraction of A, closestBed will, by default, report both
features in B. Imagine feature A is a SNP and file B contains genes. It can often occur that two gene annotations (e.g.
opposite strands) in B will overlap the SNP. As mentioned, the default behavior is to report both such genes in B.
However, the -t option allows one to optionally choose the just first or last feature (in terms of where it occurred in the
input file, not chromosome position) that occurred in B.

For example (note the difference between -l 200 and -l 300):

cat A.bed
chr1 100 101 rs1234

cat B.bed
chr1 0 1000 geneA 100 +
chr1 0 1000 geneB 100 -

closestBed -a A.bed -b B.bed
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

closestBed -a A.bed -b B.bed -t all
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

closestBed -a A.bed -b B.bed -t first
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +

closestBed -a A.bed -b B.bed -t last
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

1.5. The BEDTools suite 25

Bedtools Documentation, Release 2.17.0

-d Reporting the distance to the closest feature in base pairs

ClosestBed will optionally report the distance to the closest feature in the B file using the -d option. When a feature in
B overlaps a feature in A, a distance of 0 is reported.

cat A.bed
chr1 100 200
chr1 500 600

cat B.bed
chr1 500 1000
chr1 1300 2000

closestBed -a A.bed -b B.bed -d
chr1 100 200 chr1 500 1000 300
chr1 500 600 chr1 500 1000 0

cluster

Similar to merge, cluster report each set of overlapping or “book-ended” features in an interval file. In contrast
to merge, cluster does not flatten the cluster of intervals into a new meta-interval; instead, it assigns an unique
cluster ID to each record in each cluster. This is useful for having fine control over how sets of overlapping intervals
in a single interval file are combined.

26 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Note: bedtools cluster requires that you presort your data by chromosome and then by start position (e.g.,
sort k1,1 -k2,2n in.bed > in.sorted.bed for BED files).

See Also:

merge

Usage and option summary

Usage:

bedtools cluster [OPTIONS] -i <BED/GFF/VCF>

(or):

clusterBed [OPTIONS] -i <BED/GFF/VCF>

Op-
tion

Description

-s Force strandedness. That is, only cluster features that are the same strand. By default, this is disabled.
-d Maximum distance between features allowed for features to be clustered. Default is 0. That is,

overlapping and/or book-ended features are clustered.

Default behavior

By default, bedtools cluster collects overlapping (by at least 1 bp) and/or bookended intervals into distinct
clusters. In the example below, the 4th column is the cluster ID.

$ cat A.bed
chr1 100 200
chr1 180 250
chr1 250 500
chr1 501 1000

$ bedtools cluster -i A.bed
chr1 100 200 1
chr1 180 250 1
chr1 250 500 1
chr1 501 1000 2

-s Enforcing “strandedness”

The -s option will only cluster intervals that are overlapping/bookended and are on the same strand.

$ cat A.bed
chr1 100 200 a1 1 +
chr1 180 250 a2 2 +
chr1 250 500 a3 3 -
chr1 501 1000 a4 4 +

$ bedtools cluster -i A.bed -s
chr1 100 200 a1 1 + 1
chr1 180 250 a2 2 + 1

1.5. The BEDTools suite 27

Bedtools Documentation, Release 2.17.0

chr1 501 1000 a4 4 + 2
chr1 250 500 a3 3 - 3

-d Controlling how close two features must be in order to cluster

By default, only overlapping or book-ended features are combined into a new feature. However, one can force
cluster to combine more distant features with the -d option. For example, were one to set -d to 1000, any
features that overlap or are within 1000 base pairs of one another will be clustered.

$ cat A.bed
chr1 100 200
chr1 501 1000

$ bedtools cluster -i A.bed
chr1 100 200 1
chr1 501 1000 2

$ bedtools cluster -i A.bed -d 1000
chr1 100 200 1
chr1 501 1000 1

complement

bedtools complement returns all intervals in a genome that are not covered by at least one interval in the input
BED/GFF/VCF file.

See Also:

merge

28 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Usage and option summary

Usage:

bedtools complement -i <BED/GFF/VCF> -g <GENOME>

(or):

complementBed -i <BED/GFF/VCF> -g <GENOME>

Default behavior

By default, bedtools complement returns all genomic intervals that are not covered by at least one record from
the input file.

$ cat A.bed
chr1 100 200
chr1 400 500
chr1 500 800

$ cat my.genome
chr1 1000
chr2 800

$ bedtools complement -i A.bed -g my.genome
chr1 0 100
chr1 200 400
chr1 800 1000
chr2 0 800

coverage

coverageBed computes both the depth and breadth of coverage of features in file A across the features in file B.
For example, coverageBed can compute the coverage of sequence alignments (file A) across 1 kilobase (arbitrary)
windows (file B) tiling a genome of interest. One advantage that coverageBed offers is that it not only counts the
number of features that overlap an interval in file B, it also computes the fraction of bases in B interval that were
overlapped by one or more features. Thus, coverageBed also computes the breadth of coverage for each interval in B.

Usage and option summary

Usage:

coverageBed [OPTIONS] -a <BED/GFF/VCF> -b <BED/GFF/VCF>

1.5. The BEDTools suite 29

Bedtools Documentation, Release 2.17.0

Option Description
-abam

BAM file A. Each BAM alignment in A is
compared to B in search of overlaps. Use
“stdin” if passing A with a UNIX pipe: For
example:

samtools view -b <BAM> | intersectBed -abam stdin -b
genes.bed

-s Force strandedness. That is, only features in A are only
counted towards coverage in B if they are the same
strand. By default, this is disabled and coverage is
counted without respect to strand.

-hist Report a histogram of coverage for each feature in B as
well as a summary histogram for _all_ features in B.

Output (tab delimited) after each feature in B:

1) depth
2) # bases at depth
3) size of B
4) % of B at depth

-d Report the depth at each position in each B feature. Po-
sitions reported are one based. Each position and depth
follow the complete B feature.

-split Treat “split” BAM or BED12 entries as distinct BED
intervals when computing coverage. For BAM files, this
uses the CIGAR “N” and “D” operations to infer the
blocks for computing coverage. For BED12 files, this
uses the BlockCount, BlockStarts, and BlockEnds fields
(i.e., columns 10,11,12).

Default behavior

After each interval in B, coverageBed will report:

1. The number of features in A that overlapped (by at least one base pair) the B interval.

2. The number of bases in B that had non-zero coverage from features in A.

3. The length of the entry in B.

4. The fraction of bases in B that had non-zero coverage from features in A.

Below are the number of features in A (N=...) overlapping B and fraction of bases in B with coverage.

Chromosome ~~

BED FILE B *************** *************** ****** **************

BED File A ^^^^ ^^^^ ^^ ^^^^^^^^^ ^^^ ^^ ^^^^
^^^^^^^^ ^^^^^ ^^^^^ ^^

Result [N=3, 10/15] [N=1, 2/16] [N=1,6/6] [N=5, 11/12]

30 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

For example:

cat A.bed
chr1 10 20
chr1 20 30
chr1 30 40
chr1 100 200

cat B.bed
chr1 0 100
chr1 100 200
chr2 0 100

coverageBed -a A.bed -b B.bed
chr1 0 100 3 30 100 0.3000000
chr1 100 200 1 100 100 1.0000000
chr2 0 100 0 0 100 0.0000000

-s Calculating coverage by strand

Use the “-s” option if one wants to only count coverage if features in A are on the same strand as the feature / window
in B. This is especially useful for RNA-seq experiments.

For example (note the difference in coverage with and without -s:

cat A.bed
chr1 10 20 a1 1 -
chr1 20 30 a2 1 -
chr1 30 40 a3 1 -
chr1 100 200 a4 1 +

cat B.bed
chr1 0 100 b1 1 +
chr1 100 200 b2 1 -
chr2 0 100 b3 1 +

coverageBed -a A.bed -b B.bed
chr1 0 100 b1 1 + 3 30 100 0.3000000
chr1 100 200 b2 1 - 1 100 100 1.0000000
chr2 0 100 b3 1 + 0 0 100 0.0000000

coverageBed -a A.bed -b B.bed -s
chr1 0 100 b1 1 + 0 0 100 0.0000000
chr1 100 200 b2 1 - 0 0 100 0.0000000
chr2 0 100 b3 1 + 0 0 100 0.0000000

-hist Creating a histogram of coverage for each feature in the B file

One should use the “-hist” option to create, for each interval in B, a histogram of coverage of the features in A across
B.

In this case, each entire feature in B will be reported, followed by the depth of coverage, the number of bases at that
depth, the size of the feature, and the fraction covered. After all of the features in B have been reported, a histogram
summarizing the coverage among all features in B will be reported.

1.5. The BEDTools suite 31

Bedtools Documentation, Release 2.17.0

cat A.bed
chr1 10 20 a1 1 -
chr1 20 30 a2 1 -
chr1 30 40 a3 1 -
chr1 100 200 a4 1 +

cat B.bed
chr1 0 100 b1 1 +
chr1 100 200 b2 1 -
chr2 0 100 b3 1 +

coverageBed -a A.bed -b B.bed -hist
chr1 0 100 b1 1 + 0 70 100 0.7000000
chr1 0 100 b1 1 + 1 30 100 0.3000000
chr1 100 200 b2 1 - 1 100 100 1.0000000
chr2 0 100 b3 1 + 0 100 100 1.0000000
all 0 170 300 0.5666667
all 1 130 300 0.4333333

-hist Reporting the per-base of coverage for each feature in the B file

One should use the “-d” option to create, for each interval in B, a detailed list of coverage at each of the positions
across each B interval.

The output will consist of a line for each one-based position in each B feature, followed by the coverage detected at
that position.

cat A.bed
chr1 0 5
chr1 3 8
chr1 4 8
chr1 5 9

cat B.bed
chr1 0 10

coverageBed -a A.bed -b B.bed -d
chr1 0 10 B 1 1
chr1 0 10 B 2 1
chr1 0 10 B 3 1
chr1 0 10 B 4 2
chr1 0 10 B 5 3
chr1 0 10 B 6 3
chr1 0 10 B 7 3
chr1 0 10 B 8 3
chr1 0 10 B 9 1
chr1 0 10 B 10 0

-split Reporting coverage with spliced alignments or blocked BED features

As described in section 1.3.19, coverageBed will, by default, screen for overlaps against the entire span of a
spliced/split BAM alignment or blocked BED12 feature. When dealing with RNA-seq reads, for example, one typ-
ically wants to only tabulate coverage for the portions of the reads that come from exons (and ignore the interstitial
intron sequence). The -split command allows for such coverage to be performed.

32 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

expand

flank

genomecov

genomeCoverageBed computes a histogram of feature coverage (e.g., aligned sequences) for a given genome. Op-
tionally, by using the -d option, it will report the depth of coverage at each base on each chromosome in the genome
file (-g).

Usage and option summary

Usage:

genomeCoverageBed [OPTIONS] -i <BED> -g <GENOME>

NOTE: genomeCoverageBed requires that the input BED file be sorted by chromosome. A simple sort -k1,1 will
suffice.

Option Description
-ibam

BAM file as input for coverage. Each BAM
alignment in A added to the total coverage
for the genome. Use “stdin” if passing it
with a UNIX pipe: For example:

samtools view -b <BAM> | genomeCoverageBed -ibam
stdin -g hg18.genome

-d Report the depth at each genome position. Default be-
havior is to report a histogram.

-max Combine all positions with a depth >= max into a single
bin in the histogram.

-bg Report depth in BedGraph format. For details, see:
http://genome.ucsc.edu/goldenPath/help/bedgraph.html

-bga Report depth in BedGraph format, as above (i.e., -bg).
However with this option, regions with zero coverage
are also reported. This allows one to quickly extract all
regions of a genome with 0 coverage by applying: “grep
-w 0$” to the output.

-split Treat “split” BAM or BED12 entries as distinct BED
intervals when computing coverage. For BAM files, this
uses the CIGAR “N” and “D” operations to infer the
blocks for computing coverage. For BED12 files, this
uses the BlockCount, BlockStarts, and BlockEnds fields
(i.e., columns 10,11,12).

-strand Calculate coverage of intervals from a specific strand.
With BED files, requires at least 6 columns (strand is
column 6).

1.5. The BEDTools suite 33

http://genome.ucsc.edu/goldenPath/help/bedgraph.html

Bedtools Documentation, Release 2.17.0

Default behavior

By default, genomeCoverageBed will compute a histogram of coverage for the genome file provided. The default
output format is as follows: 1. chromosome (or entire genome) 2. depth of coverage from features in input file
3. number of bases on chromosome (or genome) with depth equal to column 2. 4. size of chromosome (or entire
genome) in base pairs 5. fraction of bases on chromosome (or entire genome) with depth equal to column 2.

For example:

cat A.bed
chr1 10 20
chr1 20 30
chr2 0 500

cat my.genome
chr1 1000
chr2 500

genomeCoverageBed -i A.bed -g my.genome
chr1 0 980 1000 0.98
chr1 1 20 1000 0.02
chr2 1 500 500 1
genome 0 980 1500 0.653333
genome 1 520 1500 0.346667

-max Controlling the histogram’s maximum depth

Using the -max option, genomeCoverageBed will “lump” all positions in the genome having feature coverage greater
than or equal to max into the max histogram bin. For example, if one sets -max equal to 50, the max depth reported
in the output will be 50 and all positions with a depth >= 50 will be represented in bin 50.

-d Reporting “per-base” genome coverage

Using the -d option, genomeCoverageBed will compute the depth of feature coverage for each base on each chromo-
some in genome file provided.

The “per-base” output format is as follows: 1. chromosome 2. chromosome position 3. depth (number) of features
overlapping this chromosome position.

For example:

cat A.bed
chr1 10 20
chr1 20 30
chr2 0 500

cat my.genome
chr1 1000
chr2 500

genomeCoverageBed -i A.bed -g my.genome -d | head -15 | tail -n 10
chr1 6 0
chr1 7 0
chr1 8 0
chr1 9 0
chr1 10 0

34 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

chr1 11 1
chr1 12 1
chr1 13 1
chr1 14 1
chr1 15 1

-split Reporting coverage with spliced alignments or blocked BED features

As described in section 1.3.19, genomeCoverageBed will, by default, screen for overlaps against the entire span
of a spliced/split BAM alignment or blocked BED12 feature. When dealing with RNA-seq reads, for example, one
typically wants to only screen for overlaps for the portions of the reads that come from exons (and ignore the interstitial
intron sequence). The -split command allows for such overlaps to be performed.

For additional details, please visit the Usage From The Wild site and have a look at example 5, contributed by Assaf
Gordon.

getfasta

bedtools getfasta extracts sequences from a FASTA file for each of the intervals defined in a BED/GFF/VCF
file.

Tip: 1. The headers in the input FASTA file must exactly match the chromosome column in the BED file.

2. You can use the UNIX fold command to set the line width of the FASTA output. For example, fold -w 60
will make each line of the FASTA file have at most 60 nucleotides for easy viewing.

See Also:

maskfasta

Usage and option summary

Usage

$ bedtools getfasta [OPTIONS] -fi <input FASTA> -bed <BED/GFF/VCF> -fo <output FASTA>

(or):

1.5. The BEDTools suite 35

Bedtools Documentation, Release 2.17.0

$ getFastaFromBed [OPTIONS] -fi <input FASTA> -bed <BED/GFF/VCF> -fo <output FASTA>

Option Description
-name Use the “name” column in the BED file for the FASTA

headers in the output FASTA file.
-tab Report extract sequences in a tab-delimited format in-

stead of in FASTA format.
-s Force strandedness. If the feature occupies the antisense

strand, the sequence will be reverse complemented. De-
fault: strand information is ignored.

-split Given BED12 input, extract and concatenate the se-
quences from the BED “blocks” (e.g., exons)

-s

Force strandedness. If the feature occupies the
antisense strand, the sequence will be reverse
complemented. | By default, strand information is
ignored.

Default behavior

bedtools getfasta will extract the sequence defined by the coordinates in a BED interval and create a new
FASTA entry in the output file for each extracted sequence. By default, the FASTA header for each extracted sequence
will be formatted as follows: “<chrom>:<start>-<end>”.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ bedtools getfasta -fi test.fa -bed test.bed -fo test.fa.out

$ cat test.fa.out
>chr1:5-10
AAACC

-name Using the BED “name” column as a FASTA header.

Using the -name option, one can set the FASTA header for each extracted sequence to be the “name” columns from
the BED feature.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10 myseq

$ bedtools getfasta -fi test.fa -bed test.bed -fo test.fa.out -name

$ cat test.fa.out

36 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

>myseq
AAACC

-tab Creating a tab-delimited output file in lieu of FASTA output.

Using the -tab option, the -fo output file will be tab-delimited instead of in FASTA format.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10 myseq

$ bedtools getfasta -fi test.fa -bed test.bed -fo test.fa.out.tab -name -tab

$ cat test.fa.out
myseq AAACC

-s Forcing the extracted sequence to reflect the requested strand

bedtools getfastawill extract the sequence in the orientation defined in the strand column when the “-s” option
is used.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 20 25 forward 1 +
chr1 20 25 reverse 1 -

$ bedtools getfasta -fi test.fa -bed test.bed -s -name -fo test.fa.out

$ cat test.fa.out
>forward
CGCTA
>reverse
TAGCG

-split Extracting BED “blocks”.

One can optionally request that FASTA records be extracting and concatenating each block in a BED12 record. For
example, consider a BED12 record describing a transcript. By default, getfasta will extract the sequence repre-
senting the entire transcript (intons, exons, UTRs). Using the -split option, getfasta will instead produce separate
a FASTA record representing a transcript that splices together each BED12 block (e.g., exons and UTRs in the case of
genes described with BED12).

$ cat genes.bed12
chr1 164404 173864 ENST00000466557.1 0 - 173864 173864 0 6 387,59,66,216,132,112, 0,1479,3695,4644,8152,9348,
chr1 235855 267253 ENST00000424587.1 0 - 267253 267253 0 4 2100,150,105,158, 0,2562,23161,31240,
chr1 317810 328455 ENST00000426316.1 0 + 328455 328455 0 2 323,145, 0,10500,

$ bedtools getfasta -fi chr1.fa -bed genes.bed12 -split -name -fo stdout

1.5. The BEDTools suite 37

Bedtools Documentation, Release 2.17.0

>ENST00000466557.1
gaggcgggaagatcacttgatatcaggagtcgaggcgggaagatcacttgacgtcaggagttcgagactggcccggccaacatggtgaaaccgcatctccactaaaaatacaaaaattagcctggtatggtggtgggcacctgtaatcccagtgacttgggaggctaaggcaggagaatttcttgaacccaggaggcagaggttgcagtgaccagcaaggttgcgccattgcaccccagcctgggcgataagagtgaaaactccatctcaaaaaaaaaaaaaaaaaaaaaaTTCCTTTGGGAAGGCCTTCTACATAAAAATCTTCAACATGAGACTGGAAAAAAGGGTATGGGATCATCACCGGACCTTTGGCTTTTACAGCTCGAGCTGACAAAGTTGATTTATCAAGTTGTAAATCTTCACCTGTTGAATTCATAAGTTCATGTCATATTTTCTTTCAGACAATTCTTCAGTTTGTTTACGTAGATCAGCGATACGATGATTCCATTTCTtcggatccttgtaagagcagagcaggtgatggagagggtgggaggtgtagtgacagaagcaggaaactccagtcattcgagacgggcagcacaagctgcggagtgcaggccacctctacggccaggaaacggattctcccgcagagcctcggaagctaccgaccctgctcccaccttgactcagtaggacttactgtagaattctggccttcagacCTGAGCCTGGCAGCTCTCTCCAACTTTGGAAGCCCAGGGGCATGGCCCCTGTCCACAGATGCACCTGGCATGAGGCGTGCCCAGAGGGACAGAGGCAGATGAGTttcgtctcctccactggattgtgagggcCAGAGTTGAACTCCCTCATTTTCCGTTCCCCAGCATTGGCAGGTTCTGGGACTGGTGGCTGTGGTGGCTCGTTGGTCTTTGTCTCTTAGAAGGTGGGGAATAATCATCATCT
>ENST00000424587.1
ccaggaagtgaaaatgacactttactgttttaatttgcatttctctgcttacaagtggattacacacattttcgtgtgctgttggctacttatTCATTCAGAAAACATACTAAGTGCTGGCTCTTTTTCATGTCCTTTATCAAGTTTGGATCATGTCATTTGCTATTTTCTTTCTGATGTAAACTCTCAAAGTCTGAAGTGTATTGTCTTTTCCTGACACATATGTTGTAAATAATTTTCTGGCTTACATTTTGACTTTTAATTTCATTCACGATGTTTTTAATGAATAATTTTAATTTTTATGAATGCAAGTTAAAATAATTCTTTCATTGTGGTCTCTGACATGTCATGCCAATAAGGGTCTTCTCCTCCAAGAGCACAGAAATATTTGCCAATACTGTCCTTAAAATCGGTCACAGTTTCATTTTTTATATATGCATTTTACTTCAATTGGGGCTTCATTTTACTGAATGCCCTATTTGAAGCAAGTTTCTCAGTTAATTCTTTTCTCAAAGGGCTAAGTATGGTAGATTGCAAACATAAGTGGCCACATAATGCTCTCACCTCctttgcctcctctcccaggaggagatagcgtccatctttccactccttaatctgggcttggccgtgtgacttgcactggccaatgggatattaacaagtctgatgtgcacagaggctgtagaatgtgcacgggggcttggtctctcttgctgccctggagaccagctgccCCACGAAGGAACCAGAGCCAACCTGCTGCTTCCTGGAGGAAGACAGTCCCTCTGTCCCTCTGTCTCTGCCAACCAGTTAACCTGCTGCTTCCTGGAGGGAGACAGTCCCTCAGTCCCTCTGTCTCTGCCAACCAGTTAACCTGCTGCTTCCTGGAGGAAGACAGTCACTCTGTCTCTGccaacccagttgaccgcagacatgcaggtctgctcaggtaagaccagcacagtccctgccctgtgagccaaaccaaatggtccagccacagaatcgtgagcaaataagtgatgcttaagtcactaagatttgggCAAAAGCTGAGCATTTATCCCAATCCCAATACTGTTTGTCCTTCTGTTTATCTGTCTGTCCTTCCCTGCTCATTTAAAATGCCCCCACTGCATCTAGTACATTTTTATAGGATCAGGGATCTGCTCTTGGATTAATGTTGTGTTCCCACCTCGAGGCAGCTTTGTAAGCTTCTGAGCACTTCCCAATTCCGGGTGACTTCAGGCACTGGGAGGCCTGTGCATCAGCTGCTGCTGTCTGTAGCTGACTTCCTTCACCCCTCTGCTGTCCTCAGCTCCTTCACCCCTGGGCCTCAGGAAATCAATGTCATGCTGACATCACTCTAGATCTAAAAGTTGGGTTCTTGgaccaggcgtggtggctcacacctgtaatcccagcactttgggaggccgaggcgggtggatcacaaggtcaggagatcaagacgattctggctaacacggtgaaaccccgtctctactaaaaatacaaaaaaattagccgggtgtggtggcaggtgcctgtagccccagctacttgggaggctgaggcaggagaatggcttgaacctgggaggtggagcttgcagtgagccaagatcacgccactgcactccagaatgggagagagagcgagactttctcaaaaaaaaaaaaaaaaCTTAGGTTCTTGGATGTTCGGGAAAGGGGGTTATTATCTAGGATCCTTGAAGCACCCCCAAGGGCATCTTCTCAAAGTTGGATGTGTGCATTTTCCTGAGAGGAAAGCTTTCCCACATTATACAGCTTCTGAAAGGGTTGCTTGACCCACAGATGTGAAGCTGAGGCTGAAGGAGACTGATGTGGTTTCTCCTCAGTTTCTCTGTGCAGCACCAGGTGGCAGCAGAGGTCAGCAAGGCAAACCCGAGCCCGGGGATGCGGAGTGGGGGCAGCTACGTCCTCTCTTGAGCTACAGCAGATTCACTCTGTTCTGTTTCATTGTTGTTTAGTTTGCGTTGTGTTTCTCCAACTTTGTGCCTCATCAGGAAAAGCTTTGGATCACAATTCCCAGtgctgaagaaaaggccaaactcttggttgtgttctttgattAGTgcctgtgacgcagcttcaggaggtcctgagaacgtgtgcacagtttagtcggcagaaacttagggaaatgtaagaccaccatcagcacataggagttctgcattggtttggtctgcattggtttggtCTTTTCCTGGATACAGGTCTTGATAGGTCTCTTGATGTCATTTCACTTCAGATTCTTCTTTAGAAAACTTGGACAATAGCATTTGCTGTCTTGTCCAAATTGTTACTTCAAGTTTGCTCTTAGCAAGTAATTGTTTCAGTATCTATATCAAAAATGGCTTAAGCCTGCAACATGTTTCTGAATGATTAACAAGGTGATAGTCAGTTCTTCATTGAATCCTGGATGCTTTATTTTTCTTAATAAGAGGAATTCATATGGATCAG
>ENST00000426316.1
AATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTctggagagtgagagaagcttccagttaaggtgacattgaagccaagtcctgaaagatgaggaagagttgtatgagagtggggagggaagggggaggtggagggaTGGGGAATGGGCCGGGATGGGATAGCGCAAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTTTGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTTGTATGGAATTTTGCCTGAGAGACCTCATTCCTCACGTCGGCCATTCCAGGCCCCGTTTTTCCCTTCCGGCAGCCTCTTGGCCTCTAATTTGTTTATCTTTTGTGTATAAATCCCAAAATATTGAATTTTGGAATATTTCCACCATTATGTAAATATTTTGATAGGTAA

use the UNIX fold command to wrap the FASTA sequence such that each line
has at most 60 characters
$ bedtools getfasta -fi chr1.fa -bed genes.bed12 -split -name -fo stdout | \

fold -w 60
>ENST00000466557.1
gaggcgggaagatcacttgatatcaggagtcgaggcgggaagatcacttgacgtcaggag
ttcgagactggcccggccaacatggtgaaaccgcatctccactaaaaatacaaaaattag
cctggtatggtggtgggcacctgtaatcccagtgacttgggaggctaaggcaggagaatt
tcttgaacccaggaggcagaggttgcagtgaccagcaaggttgcgccattgcaccccagc
ctgggcgataagagtgaaaactccatctcaaaaaaaaaaaaaaaaaaaaaaTTCCTTTGG
GAAGGCCTTCTACATAAAAATCTTCAACATGAGACTGGAAAAAAGGGTATGGGATCATCA
CCGGACCTTTGGCTTTTACAGCTCGAGCTGACAAAGTTGATTTATCAAGTTGTAAATCTT
CACCTGTTGAATTCATAAGTTCATGTCATATTTTCTTTCAGACAATTCTTCAGTTTGTTT
ACGTAGATCAGCGATACGATGATTCCATTTCTtcggatccttgtaagagcagagcaggtg
atggagagggtgggaggtgtagtgacagaagcaggaaactccagtcattcgagacgggca
gcacaagctgcggagtgcaggccacctctacggccaggaaacggattctcccgcagagcc
tcggaagctaccgaccctgctcccaccttgactcagtaggacttactgtagaattctggc
cttcagacCTGAGCCTGGCAGCTCTCTCCAACTTTGGAAGCCCAGGGGCATGGCCCCTGT
CCACAGATGCACCTGGCATGAGGCGTGCCCAGAGGGACAGAGGCAGATGAGTttcgtctc
ctccactggattgtgagggcCAGAGTTGAACTCCCTCATTTTCCGTTCCCCAGCATTGGC
AGGTTCTGGGACTGGTGGCTGTGGTGGCTCGTTGGTCTTTGTCTCTTAGAAGGTGGGGAA
TAATCATCATCT
>ENST00000424587.1
ccaggaagtgaaaatgacactttactgttttaatttgcatttctctgcttacaagtggat
tacacacattttcgtgtgctgttggctacttatTCATTCAGAAAACATACTAAGTGCTGG
CTCTTTTTCATGTCCTTTATCAAGTTTGGATCATGTCATTTGCTATTTTCTTTCTGATGT
AAACTCTCAAAGTCTGAAGTGTATTGTCTTTTCCTGACACATATGTTGTAAATAATTTTC
TGGCTTACATTTTGACTTTTAATTTCATTCACGATGTTTTTAATGAATAATTTTAATTTT
TATGAATGCAAGTTAAAATAATTCTTTCATTGTGGTCTCTGACATGTCATGCCAATAAGG
GTCTTCTCCTCCAAGAGCACAGAAATATTTGCCAATACTGTCCTTAAAATCGGTCACAGT
TTCATTTTTTATATATGCATTTTACTTCAATTGGGGCTTCATTTTACTGAATGCCCTATT
TGAAGCAAGTTTCTCAGTTAATTCTTTTCTCAAAGGGCTAAGTATGGTAGATTGCAAACA
TAAGTGGCCACATAATGCTCTCACCTCctttgcctcctctcccaggaggagatagcgtcc
atctttccactccttaatctgggcttggccgtgtgacttgcactggccaatgggatatta
acaagtctgatgtgcacagaggctgtagaatgtgcacgggggcttggtctctcttgctgc
cctggagaccagctgccCCACGAAGGAACCAGAGCCAACCTGCTGCTTCCTGGAGGAAGA
CAGTCCCTCTGTCCCTCTGTCTCTGCCAACCAGTTAACCTGCTGCTTCCTGGAGGGAGAC
AGTCCCTCAGTCCCTCTGTCTCTGCCAACCAGTTAACCTGCTGCTTCCTGGAGGAAGACA
GTCACTCTGTCTCTGccaacccagttgaccgcagacatgcaggtctgctcaggtaagacc
agcacagtccctgccctgtgagccaaaccaaatggtccagccacagaatcgtgagcaaat
aagtgatgcttaagtcactaagatttgggCAAAAGCTGAGCATTTATCCCAATCCCAATA
CTGTTTGTCCTTCTGTTTATCTGTCTGTCCTTCCCTGCTCATTTAAAATGCCCCCACTGC
ATCTAGTACATTTTTATAGGATCAGGGATCTGCTCTTGGATTAATGTTGTGTTCCCACCT
CGAGGCAGCTTTGTAAGCTTCTGAGCACTTCCCAATTCCGGGTGACTTCAGGCACTGGGA
GGCCTGTGCATCAGCTGCTGCTGTCTGTAGCTGACTTCCTTCACCCCTCTGCTGTCCTCA
GCTCCTTCACCCCTGGGCCTCAGGAAATCAATGTCATGCTGACATCACTCTAGATCTAAA
AGTTGGGTTCTTGgaccaggcgtggtggctcacacctgtaatcccagcactttgggaggc
cgaggcgggtggatcacaaggtcaggagatcaagacgattctggctaacacggtgaaacc
ccgtctctactaaaaatacaaaaaaattagccgggtgtggtggcaggtgcctgtagcccc
agctacttgggaggctgaggcaggagaatggcttgaacctgggaggtggagcttgcagtg
agccaagatcacgccactgcactccagaatgggagagagagcgagactttctcaaaaaaa

38 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

aaaaaaaaaCTTAGGTTCTTGGATGTTCGGGAAAGGGGGTTATTATCTAGGATCCTTGAA
GCACCCCCAAGGGCATCTTCTCAAAGTTGGATGTGTGCATTTTCCTGAGAGGAAAGCTTT
CCCACATTATACAGCTTCTGAAAGGGTTGCTTGACCCACAGATGTGAAGCTGAGGCTGAA
GGAGACTGATGTGGTTTCTCCTCAGTTTCTCTGTGCAGCACCAGGTGGCAGCAGAGGTCA
GCAAGGCAAACCCGAGCCCGGGGATGCGGAGTGGGGGCAGCTACGTCCTCTCTTGAGCTA
CAGCAGATTCACTCTGTTCTGTTTCATTGTTGTTTAGTTTGCGTTGTGTTTCTCCAACTT
TGTGCCTCATCAGGAAAAGCTTTGGATCACAATTCCCAGtgctgaagaaaaggccaaact
cttggttgtgttctttgattAGTgcctgtgacgcagcttcaggaggtcctgagaacgtgt
gcacagtttagtcggcagaaacttagggaaatgtaagaccaccatcagcacataggagtt
ctgcattggtttggtctgcattggtttggtCTTTTCCTGGATACAGGTCTTGATAGGTCT
CTTGATGTCATTTCACTTCAGATTCTTCTTTAGAAAACTTGGACAATAGCATTTGCTGTC
TTGTCCAAATTGTTACTTCAAGTTTGCTCTTAGCAAGTAATTGTTTCAGTATCTATATCA
AAAATGGCTTAAGCCTGCAACATGTTTCTGAATGATTAACAAGGTGATAGTCAGTTCTTC
ATTGAATCCTGGATGCTTTATTTTTCTTAATAAGAGGAATTCATATGGATCAG
>ENST00000426316.1
AATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTctggagagtgag
agaagcttccagttaaggtgacattgaagccaagtcctgaaagatgaggaagagttgtat
gagagtggggagggaagggggaggtggagggaTGGGGAATGGGCCGGGATGGGATAGCGC
AAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTT
TGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTT
GTATGGAATTTTGCCTGAGAGACCTCATTCCTCACGTCGGCCATTCCAGGCCCCGTTTTT
CCCTTCCGGCAGCCTCTTGGCCTCTAATTTGTTTATCTTTTGTGTATAAATCCCAAAATA
TTGAATTTTGGAATATTTCCACCATTATGTAAATATTTTGATAGGTAA

groupby

bedtools groupby is a useful tool that mimics the “group by” clause in database systems. Given a file or stream
that is sorted by the appropriate “grouping columns” (-g), groupby will compute summary statistics on another
column (-c) in the file or stream. This will work with output from all BEDTools as well as any other tab-delimited file
or stream. As such, this is a generally useful tool for all command-line analyses, not just genomics related research.

Note: When using bedtools groupby, the input data must be ordered by the same columns as specified with
the -grp argument, which establish which columns should be used to define a group of similar data. For example, if
-grp is 1,2,3, the data should be pre-grouped accordingly. When bedtools groupby detects changes in the group
columns it then summarizes all lines with that group. For example, sort -k1,1 -k2,2 -k3,3 data.txt |
bedtools groupby -g 1,2,3 -c 4 -o mean.

Usage and option summary

Usage

bedtools groupby [OPTIONS] -i <input> -g <group columns> -c <op. column> -o <operation>

or:

groupBy [OPTIONS] -i <input> -g <group columns> -c <op. column> -o <operation>

1.5. The BEDTools suite 39

Bedtools Documentation, Release 2.17.0

Option Description
-i The input file that should be grouped and summarized.

Use “stdin” when using piped input. Note: if -i is omit-
ted, input is assumed to come from standard input
(stdin)

-g (-grp) Specifies which column(s) (1-based) should be used to
group the input. The columns must be comma-separated
and each column must be explicitly listed. No ranges
(e.g. 1-4) yet allowed. Default: 1,2,3

-c (-opCol) Specify the column (1-based) that should be summa-
rized. Required.

-o (-op) Specify the operation that should be applied to opCol.

Valid operations:

sum - numeric only
count - numeric or text
count_distinct - numeric or text
min - numeric only
max - numeric only
mean - numeric only
median - numeric only
mode - numeric or text
antimode - numeric or text
stdev - numeric only
sstdev - numeric only
collapse (i.e., print a comma separated list) - numeric
or text
distinct (i.e., print a comma separated list) - numeric or
text
concat (i.e., print a comma separated list) - numeric or
text
freqasc - print a comma separated list of values
observed and the number of times they were observed.

Reported in ascending order of frequency*
freqdesc - print a comma separated list of values
observed and the number of times they were observed.

Reported in descending order of frequency*
first - numeric or text
last - numeric or text
Default: sum

Default behavior.

Let’s imagine we have three incredibly interesting genetic variants that we are studying and we are interested in what
annotated repeats these variants overlap.

cat variants.bed
chr21 9719758 9729320 variant1

40 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

chr21 9729310 9757478 variant2
chr21 9795588 9796685 variant3

bedtools intersect -a variants.bed -b repeats.bed -wa -wb > variantsToRepeats.bed
cat variantsToRepeats.bed
chr21 9719758 9729320 variant1 chr21 9719768 9721892 ALR/Alpha 1004 +
chr21 9719758 9729320 variant1 chr21 9721905 9725582 ALR/Alpha 1010 +
chr21 9719758 9729320 variant1 chr21 9725582 9725977 L1PA3 3288 +
chr21 9719758 9729320 variant1 chr21 9726021 9729309 ALR/Alpha 1051 +
chr21 9729310 9757478 variant2 chr21 9729320 9729809 L1PA3 3897 -
chr21 9729310 9757478 variant2 chr21 9729809 9730866 L1P1 8367 +
chr21 9729310 9757478 variant2 chr21 9730866 9734026 ALR/Alpha 1036 -
chr21 9729310 9757478 variant2 chr21 9734037 9757471 ALR/Alpha 1182 -
chr21 9795588 9796685 variant3 chr21 9795589 9795713 (GAATG)n 308 +
chr21 9795588 9796685 variant3 chr21 9795736 9795894 (GAATG)n 683 +
chr21 9795588 9796685 variant3 chr21 9795911 9796007 (GAATG)n 345 +
chr21 9795588 9796685 variant3 chr21 9796028 9796187 (GAATG)n 756 +
chr21 9795588 9796685 variant3 chr21 9796202 9796615 (GAATG)n 891 +
chr21 9795588 9796685 variant3 chr21 9796637 9796824 (GAATG)n 621 +

We can see that variant1 overlaps with 3 repeats, variant2 with 4 and variant3 with 6. We can use bedtools groupby to
summarize the hits for each variant in several useful ways. The default behavior is to compute the sum of the opCol.

bedtools groupby -i variantsToRepeats.bed -g 1,2,3 -c 9
chr21 9719758 9729320 6353
chr21 9729310 9757478 14482
chr21 9795588 9796685 3604

Computing the min and max.

Now let’s find the min and max repeat score for each variant. We do this by “grouping” on the variant coordinate
columns (i.e. cols. 1,2 and 3) and ask for the min and max of the repeat score column (i.e. col. 9).

bedtools groupby -i variantsToRepeats.bed -g 1,2,3 -c 9 -o min
chr21 9719758 9729320 1004
chr21 9729310 9757478 1036
chr21 9795588 9796685 308

We can also group on just the name column with similar effect.

bedtools groupby -i variantsToRepeats.bed -g 4 -c 9 -o min
variant1 1004
variant2 1036
variant3 308

What about the max score? Let’s keep the coordinates and the name of the variants so that we stay in BED format.

bedtools groupby -i variantsToRepeats.bed -grp 1-4 -c 9 -o max
chr21 9719758 9729320 variant1 3288
chr21 9729310 9757478 variant2 8367
chr21 9795588 9796685 variant3 891

Computing the mean and median.

Now let’s find the mean and median repeat score for each variant.

1.5. The BEDTools suite 41

Bedtools Documentation, Release 2.17.0

cat variantsToRepeats.bed | bedtools groupby -g 1-4 -c 9 -o mean
chr21 9719758 9729320 variant1 1588.25
chr21 9729310 9757478 variant2 3620.5
chr21 9795588 9796685 variant3 600.6667

bedtools groupby -i variantsToRepeats.bed -g 1-4 -c 9 -op median
chr21 9719758 9729320 variant1 1030.5
chr21 9729310 9757478 variant2 2539.5
chr21 9795588 9796685 variant3 652

Computing the mode and “antimode”.

Now let’s find the mode and antimode (i.e., the least frequent) repeat score for each variant (in this case they are
identical).

bedtools groupby -i variantsToRepeats.bed -g 1-4 -c 9 -o mode
chr21 9719758 9729320 variant1 1004
chr21 9729310 9757478 variant2 1036
chr21 9795588 9796685 variant3 308

bedtools groupby -i variantsToRepeats.bed -g 1-4 -c 9 -o antimode
chr21 9719758 9729320 variant1 1004
chr21 9729310 9757478 variant2 1036
chr21 9795588 9796685 variant3 308

Computing the count of lines for a given group.

Figure:

bedtools groupby -i variantsToRepeats.bed -g 1-4 -c 9 -c count
chr21 9719758 9729320 variant1 4
chr21 9729310 9757478 variant2 4
chr21 9795588 9796685 variant3 6

Collapsing: listing all of the values in the opCol for a given group.

Now for something different. What if we wanted all of the names of the repeats listed on the same line as the variants?
Use the collapse option. This “denormalizes” things. Now you have a list of all the repeats on a single line.

bedtools groupby -i variantsToRepeats.bed -grp 1-4 -c 9 -o collapse
chr21 9719758 9729320 variant1 ALR/Alpha,ALR/Alpha,L1PA3,ALR/Alpha,
chr21 9729310 9757478 variant2 L1PA3,L1P1,ALR/Alpha,ALR/Alpha,
chr21 9795588 9796685 variant3 (GAATG)n,(GAATG)n,(GAATG)n,(GAATG)n,(GAATG)n,(GAATG)n,

Computing frequencies: freqasc and freqdesc.

What if we want to report each distinct value along with its number of occurrence (much like uniq -c)? The freqasc
and freqdesc‘‘ operations handle this.

cat variantsToRepeats.bed | bedtools groupby -g 1 -c 8 -o freqdesc
chr21 (GAATG)n:6,ALR/Alpha:5,L1PA3:2,L1P1:1,

42 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

cat variantsToRepeats.bed | bedtools groupby -g 1 -c 8 -o freqasc
chr21 L1P1:1,L1PA3:2,ALR/Alpha:5,(GAATG)n:6,

intersect

By far, the most common question asked of two sets of genomic features is whether or not any of the features in the
two sets “overlap” with one another. This is known as feature intersection. bedtools intersect allows one to
screen for overlaps between two sets of genomic features. Moreover, it allows one to have fine control as to how the
intersections are reported. bedtools intersect works with both BED/GFF/VCF and BAM files as input.

Note: If you are trying to intersect very large files and are having trouble with excessive memory usage, please presort
your data by chromosome and then by start position (e.g., sort k1,1 -k2,2n in.bed > in.sorted.bed
for BED files) and then use the -sorted option. This invokes a memory-efficient algorithm designed for large files.

See Also:

subtract window

1.5. The BEDTools suite 43

Bedtools Documentation, Release 2.17.0

Usage and option summary

Usage:

bedtools intersect [OPTIONS] [-a|-abam] -b <BED/GFF/VCF>

(or):

intersectBed [OPTIONS] [-a|-abam] -b <BED/GFF/VCF>

Op-
tion

Description

-a BED/GFF/VCF file A. Each feature in A is compared to B in search of overlaps. Use “stdin” if passing A
with a UNIX pipe.

-b BED/GFF/VCF file B. Use “stdin” if passing B with a UNIX pipe.
-
abam

BAM file A. Each BAM alignment in A is compared to B in search of overlaps. Use “stdin” if passing A
with a UNIX pipe: For example: samtools view -b <BAM> | bedtools intersect -abam stdin -b genes.bed

-
ubam

Write uncompressed BAM output. The default is write compressed BAM output.

-bed When using BAM input (-abam), write output as BED. The default is to write output in BAM when using
-abam. For example: bedtools intersect -abam reads.bam -b genes.bed -bed

-wa Write the original entry in A for each overlap.
-wb Write the original entry in B for each overlap. Useful for knowing what A overlaps. Restricted by -f and

-r.
-loj Perform a “left outer join”. That is, for each feature in A report each overlap with B. If no overlaps are

found, report a NULL feature for B.
-wo Write the original A and B entries plus the number of base pairs of overlap between the two features.

Only A features with overlap are reported. Restricted by -f and -r.
-wao Write the original A and B entries plus the number of base pairs of overlap between the two features.

However, A features w/o overlap are also reported with a NULL B feature and overlap = 0. Restricted by
-f and -r.

-u Write original A entry once if any overlaps found in B. In other words, just report the fact at least one
overlap was found in B. Restricted by -f and -r.

-c For each entry in A, report the number of hits in B while restricting to -f. Reports 0 for A entries that have
no overlap with B. Restricted by -f and -r.

-v Only report those entries in A that have no overlap in B. Restricted by -f and -r.
-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-r Require that the fraction of overlap be reciprocal for A and B. In other words, if -f is 0.90 and -r is used,

this requires that B overlap at least 90% of A and that A also overlaps at least 90% of B.
-s Force “strandedness”. That is, only report hits in B that overlap A on the same strand. By default,

overlaps are reported without respect to strand.
-S Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By

default, overlaps are reported without respect to strand.
-split Treat “split” BAM (i.e., having an “N” CIGAR operation) or BED12 entries as distinct BED intervals.
-
sorted

For very large B files, invoke a “sweeping” algorithm that requires position-sorted (e.g., sort -k1,1
-k2,2n for BED files) input. When using -sorted, memory usage remains low even for very large files.

-
header

Print the header from the A file prior to results.

Default behavior

By default, if an overlap is found, bedtools intersect reports the shared interval between the two overlapping
features.

44 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed
chr1 15 20

-wa Reporting the original A feature

Instead, one can force bedtools intersect to report the original “A” feature when an overlap is found. As
shown below, the entire “A” feature is reported, not just the portion that overlaps with the “B” feature.

For example:

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed -wa
chr1 10 20

-wb Reporting the original B feature

Similarly, one can force bedtools intersect to report the original “B” feature when an overlap is found. If just
-wb is used, the overlapping portion of A will be reported followed by the original “B”. If both -wa and -wb are used,
the originals of both “A” and “B” will be reported.

For example (-wb alone):

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed -wb
chr1 15 20 chr 15 20

Now -wa and -wb:

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed -wa -wb
chr1 10 20 chr 15 20

1.5. The BEDTools suite 45

Bedtools Documentation, Release 2.17.0

-loj Left outer join. Report features in A with and without overlaps

By default, bedtools intersect will only report features in A that have an overlap in B. The -loj option will
report every A feature no matter what. When there is an overlap (or more than 1), it will report A with its overlaps.
Yet when there are no overlaps, an A feature will be reported with a NULL B feature to indicate that there were no
overlaps

For example (without -loj):

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed
chr1 10 20 chr 15 20

Now with -loj:

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed -loj
chr1 10 20 chr 15 20
chr1 30 40 . -1 -1

-wo Write the amount of overlap between intersecting features

The -wo option reports a column after each combination of intersecting “A” and “B” features indicating the amount
of overlap in bases pairs that is observed between the two features.

Note: When an interval in A does not intersect an interval in B, it will not be reported. If you would like to report
such intervals with an overlap equal to 0, see the -wao option.

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20
chr1 18 25

$ bedtools intersect -a A.bed -b B.bed -wo
chr1 10 20 chr1 15 20 5
chr1 10 20 chr1 18 25 2

46 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

-wao Write amounts of overlap for all features.

The -wao option extends upon the -wo option in that, unlike -wo, it reports an overlap of 0 for features in A that do
not have an intersection in B.

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20
chr1 18 25

$ bedtools intersect -a A.bed -b B.bed -wao
chr1 10 20 chr1 15 20 5
chr1 10 20 chr1 18 25 2
chr1 30 40 . -1 -1 0

-u (unique) Reporting the mere presence of any overlapping features

Often you’d like to simply know a feature in “A” overlaps one or more features in B without reporting each and every
intersection. The -u option will do exactly this: if an one or more overlaps exists, the A feature is reported. Otherwise,
nothing is reported.

For example, without -u:

$ cat A.bed
chr1 10 20

$ cat B.bed
chr1 15 20
chr1 17 22

$ bedtools intersect -a A.bed -b B.bed
chr1 10 20
chr1 10 20

Now with -u:

$ cat A.bed
chr1 10 20

$ cat B.bed
chr1 15 20
chr1 17 22

$ bedtools intersect -a A.bed -b B.bed -u
chr1 10 20

-c Reporting the number of overlapping features

The -c option reports a column after each “A” feature indicating the number (0 or more) of overlapping features found
in “B”. Therefore, each feature in A is reported once.

$ cat A.bed
chr1 10 20

1.5. The BEDTools suite 47

Bedtools Documentation, Release 2.17.0

chr1 30 40

$ cat B.bed
chr1 15 20
chr1 18 25

$ bedtools intersect -a A.bed -b B.bed -c
chr1 10 20 2
chr1 30 40 0

-v Reporting the absence of any overlapping features

There will likely be cases where you’d like to know which “A” features do not overlap with any of the “B” features.
Perhaps you’d like to know which SNPs don’t overlap with any gene annotations. The -v (an homage to “grep -v”)
option will only report those “A” features that have no overlaps in “B”.

$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed -v
chr1 30 40

-f Requiring a minimal overlap fraction

By default, bedtools intersect will report an overlap between A and B so long as there is at least one base pair
is overlapping. Yet sometimes you may want to restrict reported overlaps between A and B to cases where the feature
in B overlaps at least X% (e.g. 50%) of the A feature. The -f option does exactly this.

For example (note that the second B entry is not reported):

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 130 201
chr1 180 220

$ bedtools intersect -a A.bed -b B.bed -f 0.50 -wa -wb
chr1 100 200 chr1 130 201

-r, and -f Requiring reciprocal minimal overlap fraction

Similarly, you may want to require that a minimal fraction of both the A and the B features is overlapped. For example,
if feature A is 1kb and feature B is 1Mb, you might not want to report the overlap as feature A can overlap at most
1% of feature B. If one set -f to say, 0.02, and one also enable the -r (reciprocal overlap fraction required), this overlap
would not be reported.

For example (note that the second B entry is not reported):

48 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 130 201
chr1 130 200000

$ bedtools intersect -a A.bed -b B.bed -f 0.50 -r -wa -wb
chr1 100 200 chr1 130 201

-s Enforcing same strandedness

By default, bedtools intersect will report overlaps between features even if the features are on opposite
strands. However, if strand information is present in both BED files and the “-s” option is used, overlaps will only be
reported when features are on the same strand.

For example (note that the first B entry is not reported):

$ cat A.bed
chr1 100 200 a1 100 +

$ cat B.bed
chr1 130 201 b1 100 -
chr1 132 203 b2 100 +

$ bedtools intersect -a A.bed -b B.bed -wa -wb -s
chr1 100 200 a1 100 + chr1 132 203 b2 100 +

-S Enforcing opposite “strandedness”

The -s option enforces that overlaps be on the same strand. In some cases, you may want to enforce that overlaps be
found on opposite strands. In this, case use the -S option.

For example:

$ cat A.bed
chr1 100 200 a1 100 +

$ cat B.bed
chr1 130 201 b1 100 -
chr1 132 203 b2 100 +

$ bedtools intersect -a A.bed -b B.bed -wa -wb -S
chr1 100 200 a1 100 + chr1 130 201 b1 100 -

-abam Default behavior when using BAM input

When comparing alignments in BAM format (-abam) to features in BED format (-b), bedtools intersect will,
by default, write the output in BAM format. That is, each alignment in the BAM file that meets the user’s criteria will
be written (to standard output) in BAM format. This serves as a mechanism to create subsets of BAM alignments are
of biological interest, etc. Note that only the mate in the BAM alignment is compared to the BED file. Thus, if only
one end of a paired-end sequence overlaps with a feature in B, then that end will be written to the BAM output. By
contrast, the other mate for the pair will not be written. One should use pairToBed(Section 5.2) if one wants each
BAM alignment for a pair to be written to BAM output.

1.5. The BEDTools suite 49

Bedtools Documentation, Release 2.17.0

$ bedtools intersect -abam reads.unsorted.bam -b simreps.bed | \
samtools view - | \

head -3

BERTHA_0001:3:1:15:1362#0 99 chr4 9236904 0 50M = 9242033 5 1 7 9
AGACGTTAACTTTACACACCTCTGCCAAGGTCCTCATCCTTGTATTGAAG W c T U] b \ g c e g X g f c b f c c b d d g g V Y P W W _
\c‘dcdabdfW^a^gggfgd XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:19 X1:i:2 XM:i:0 XO:i:0 XG:i:0 MD:Z:50
BERTHA _0001:3:1:16:994#0 83 chr6 114221672 37 25S6M1I11M7S =
114216196 -5493 G A A A G G C C A G A G T A T A G A A T A A A C A C A A C A A T G T C C A A G G T A C A C T G T T A
gffeaaddddggggggedgcgeggdegggggffcgggggggegdfggfgf XT:A:M NM:i:3 SM:i:37 AM:i:37 XM:i:2 X O : i :
1 XG:i:1 MD:Z:6A6T3
BERTHA _0001:3:1:16:594#0 147 chr8 43835330 0 50M =
43830893 -4487 CTTTGGGAGGGCTTTGTAGCCTATCTGGAAAAAGGAAATATCTTCCCATG U
\e^bgeTdg_Kgcg‘ggeggg_gggggggggddgdggVg\gWdfgfgff XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:10 X1:i:7 X M : i :
2 XO:i:0 XG:i:0 MD:Z:1A2T45

-ubam Default behavior when using BAM input

The -ubam option writes uncompressed BAM output to stdout. This is useful for increasing the speed of pipelines
that accept the output of bedtools intersect as input, since the receiving tool does not need to uncompress the data.

-bed Output BED format when using BAM input

When comparing alignments in BAM format (-abam) to features in BED format (-b), bedtools intersect will
optionally write the output in BED format. That is, each alignment in the BAM file is converted to a 6 column BED
feature and if overlaps are found (or not) based on the user’s criteria, the BAM alignment will be reported in BED
format. The BED “name” field is comprised of the RNAME field in the BAM alignment. If mate information is
available, the mate (e.g., “/1” or “/2”) field will be appended to the name. The “score” field is the mapping quality
score from the BAM alignment.

$ bedtools intersect -abam reads.unsorted.bam -b simreps.bed -bed | head -20

chr4 9236903 9236953 BERTHA_0001:3:1:15:1362#0/1 0 +
chr6 114221671 114221721 BERTHA_0001:3:1:16:994#0/1 37 -
chr8 43835329 43835379 BERTHA_0001:3:1:16:594#0/2 0 -
chr4 49110668 49110718 BERTHA_0001:3:1:31:487#0/1 23 +
chr19 27732052 27732102 BERTHA_0001:3:1:32:890#0/2 46 +
chr19 27732012 27732062 BERTHA_0001:3:1:45:1135#0/1 37 +
chr10 117494252 117494302 BERTHA_0001:3:1:68:627#0/1 37 -
chr19 27731966 27732016 BERTHA_0001:3:1:83:931#0/2 9 +
chr8 48660075 48660125 BERTHA_0001:3:1:86:608#0/2 37 -
chr9 34986400 34986450 BERTHA_0001:3:1:113:183#0/2 37 -
chr10 42372771 42372821 BERTHA_0001:3:1:128:1932#0/1 3 -
chr19 27731954 27732004 BERTHA_0001:3:1:130:1402#0/2 0 +
chr10 42357337 42357387 BERTHA_0001:3:1:137:868#0/2 9 +
chr1 159720631 159720681 BERTHA_0001:3:1:147:380#0/2 37 -
chrX 58230155 58230205 BERTHA_0001:3:1:151:656#0/2 37 -
chr5 142612746 142612796 BERTHA_0001:3:1:152:1893#0/1 37 -
chr9 71795659 71795709 BERTHA_0001:3:1:177:387#0/1 37 +
chr1 106240854 106240904 BERTHA_0001:3:1:194:928#0/1 37 -
chr4 74128456 74128506 BERTHA_0001:3:1:221:724#0/1 37 -
chr8 42606164 42606214 BERTHA_0001:3:1:244:962#0/1 37 +

50 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

-split Reporting overlaps with spliced alignments or blocked BED features

As described in section 1.3.19, bedtools intersect will, by default, screen for overlaps against the entire span of a
spliced/split BAM alignment or blocked BED12 feature. When dealing with RNA-seq reads, for example, one typi-
cally wants to only screen for overlaps for the portions of the reads that come from exons (and ignore the interstitial
intron sequence). The -split command allows for such overlaps to be performed.

For example, the diagram below illustrates the default behavior. The blue dots represent the “split/ spliced” portion
of the alignment (i.e., CIGAR “N” operation). In this case, the two exon annotations are reported as overlapping with
the “split” BAM alignment, but in addition, a third feature that overlaps the “split” portion of the alignment is also
reported.

Chromosome ~~

Exons --------------- ----------

BED/BAM A ************.......................................****

BED File B ^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^^^^^

Result =============== ======== ==========

In contrast, when using the -split option, only the exon overlaps are reported.

Chromosome ~~

Exons --------------- ----------

BED/BAM A ************.......................................****

BED File B ^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^^^^^

Result =============== ==========

-sorted Invoke a memory-efficient algorithm for very large files.

The default algorithm for detecting overlaps loads the B file into an R-tree structure in memory. While fast, it can
consume substantial memory for large files. For these reason, we provide an alternative, memory efficient algorithm
that depends upon inout files that have been sorted by chromosome and then by start position. When both input files
are position-sorted, the algorithm can “sweep” through the data and detect overlaps on the fly in a manner much like
the way database systems join two tables. This option is invoked with the -sorted option.

For example:

$ sort -k1,1 -k2,2n big.bed > big.sorted.bed

$ sort -k1,1 -k2,2n huge.bed > huge.sorted.bed

$ bedtools intersect -a big.sorted.bed -b huge.sorted.bed -sorted

-header Print the header for the A file before reporting results.

By default, if your A file has a header, it is ignored when reporting results. This option will instead tell bedtools to
first print the header for the A file prior to reporting results.

1.5. The BEDTools suite 51

Bedtools Documentation, Release 2.17.0

jaccard

links

Creates an HTML file with links to an instance of the UCSC Genome Browser for all features / intervals in a file. This
is useful for cases when one wants to manually inspect through a large set of annotations or features.

Usage and option summary

Usage:

linksBed [OPTIONS] -i <BED/GFF/VCF> > <HTML file>

Option Description
-base The “basename” for the UCSC browser. Default: http://genome.ucsc.edu
-org The organism (e.g. mouse, human). Default: human
-db The genome build. Default: hg18

Default behavior

By default, linksBed creates links to the public UCSC Genome Browser.

For example:

head genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -
chr21 9928613 10012791 uc002yir.1 0 -
chr21 9928613 10012791 uc010gkv.1 0 -
chr21 9928613 10061300 uc002yis.1 0 -
chr21 10042683 10120796 uc002yit.1 0 -
chr21 10042683 10120808 uc002yiu.1 0 -
chr21 10079666 10120808 uc002yiv.1 0 -
chr21 10080031 10081687 uc002yiw.1 0 -
chr21 10081660 10120796 uc002yix.2 0 -

linksBed -i genes.bed > genes.html

When genes.html is opened in a web browser, one should see something like the following, where each link on the
page is built from the features in genes.bed:

Creating HTML links to a local UCSC Browser installation

Optionally, linksBed will create links to a local copy of the UCSC Genome Browser.

For example:

head -3 genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -

linksBed -i genes.bed -base http://mirror.uni.edu > genes.html

One can point the links to the appropriate organism and genome build as well:

52 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

head -3 genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -

linksBed -i genes.bed -base http://mirror.uni.edu -org mouse -db mm9 > genes.html

makewindows

map

bedtools map allows one to map overlapping features in a B file onto features in an A file and apply statistics
and/or summary operations on those features.

For example, one could use bedtools map to compute the average score of BEDGRAPH records that overlap
genes. Since the fourth column in BEDGRAPH is the score, the following command illustrates how this would be
done:

$ bedtools map -a genes.bed -b peaks.bedgraph -c 4 -o mean

Another example is discussed in this Biostars post.

1.5. The BEDTools suite 53

http://www.biostars.org/p/61653/

Bedtools Documentation, Release 2.17.0

Note: bedtools map requires each input file to be sorted by genome coordinate. For BED files, this can be done
with sort -k1,1 -k2,2n.

Usage and option summary

Usage:

bedtools map [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

(or):

mapBed [OPTIONS] -a <bed/gff/vcf> -b <bed/gff/vcf>

54 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Option Description
-c

Specify the column from the B file to map onto
intervals in A.
Default: 5

-o Specify the operation that should be applied to -c.

Valid operations:

sum - numeric only
count - numeric or text
count_distinct - numeric or text
min - numeric only
max - numeric only
mean - numeric only
median - numeric only
antimode - numeric or text
collapse (i.e., print a comma separated list) - numeric
or text
distinct (i.e., print a comma separated list) - numeric or
text
concat (i.e., print a comma separated list) - numeric or
text

Default: 5

-f Minimum overlap required as a fraction of A. Default is
1E-9 (i.e. 1bp).

-r Require that the fraction of overlap be reciprocal for A
and B. In other words, if -f is 0.90 and -r is used, this
requires that B overlap at least 90% of A and that A also
overlaps at least 90% of B.

-s Force “strandedness”. That is, only report hits in B that
overlap A on the same strand. By default, overlaps are
reported without respect to strand.

-S Require different strandedness. That is, only report hits
in B that overlap A on the _opposite_ strand. By default,
overlaps are reported without respect to strand.

-null

The value to print if no overlaps are found for an A
interval.
Default: "."

-header Print the header from the A file prior to results.

1.5. The BEDTools suite 55

Bedtools Documentation, Release 2.17.0

Default behavior - compute the sum of the score column for all overlaps.

By default, map computes the sum of the 5th column (the score field for BED format) for all intervals in B that
overlap each interval in A.

Tip: Records in A that have no overlap will, by default, return . for the computed value from B. This can be changed
with the -null option.

$ cat a.bed
chr1 10 20 a1 1 +
chr1 50 60 a2 2 -
chr1 80 90 a3 3 -

$ cat b.bed
chr1 12 14 b1 2 +
chr1 13 15 b2 5 -
chr1 16 18 b3 5 +
chr1 82 85 b4 2 -
chr1 85 87 b5 3 +

$ bedtools map -a a.bed -b b.bed
chr1 10 20 a1 1 + 12
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 5

mean Compute the mean of a column from overlapping intervals

$ cat a.bed
chr1 10 20 a1 1 +
chr1 50 60 a2 2 -
chr1 80 90 a3 3 -

$ cat b.bed
chr1 12 14 b1 2 +
chr1 13 15 b2 5 -
chr1 16 18 b3 5 +
chr1 82 85 b4 2 -
chr1 85 87 b5 3 +

$ bedtools map -a a.bed -b b.bed -c 5 -o mean
chr1 10 20 a1 1 + 4
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 2.5

collapse List each value of a column from overlapping intervals

$ bedtools map -a a.bed -b b.bed -c 5 -o collapse
chr1 10 20 a1 1 + 2,5,5
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 2,3

56 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

distinct List each unique value of a column from overlapping intervals

$ bedtools map -a a.bed -b b.bed -c 5 -o distinct
chr1 10 20 a1 1 + 2,5
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 2,3

-s Only include intervals that overlap on the same strand.

$ bedtools map -a a.bed -b b.bed -c 5 -o collapse -s
chr1 10 20 a1 1 + 2,5
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 2

-S Only include intervals that overlap on the opposite strand.

$ bedtools map -a a.bed -b b.bed -c 5 -o collapse -S
chr1 10 20 a1 1 + 5
chr1 50 60 a2 2 - .
chr1 80 90 a3 3 - 3

maskfasta

bedtools maskfasta masks sequences in a FASTA file based on intervals defined in a feature file. The headers
in the input FASTA file must exactly match the chromosome column in the feature file. This may be useful fro creating
your own masked genome file based on custom annotations or for masking all but your target regions when aligning
sequence data from a targeted capture experiment.

Usage and option summary

Usage

$ bedtools maskfasta [OPTIONS] -fi <input FASTA> -bed <BED/GFF/VCF> -fo <output FASTA>

1.5. The BEDTools suite 57

Bedtools Documentation, Release 2.17.0

(or):

$ maskFastaFromBed [OPTIONS] -fi <input FASTA> -bed <BED/GFF/VCF> -fo <output FASTA>

Note: The input (-fi) and output (-fo) FASTA files must be different.

See Also:

getfasta

Op-
tion

Description

-soft Soft-mask (that is, convert to lower-case bases) the FASTA sequence. By default, hard-masking (that is,
conversion to Ns) is performed.

-mc Replace masking character. That is, instead of masking with Ns, use another character.

Default behavior

bedtools maskfasta will mask a FASTA file based on the intervals in a BED file. The newly masked FASTA file is
written to the output FASTA file.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ bedtools maskfasta -fi test.fa -bed test.bed -fo test.fa.out

$ cat test.fa.out
>chr1
AAAAANNNNNCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

-soft Soft-masking the FASTA file.

Using the -soft option, one can optionally “soft-mask” the FASTA file.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ bedtools maskfasta -fi test.fa -bed test.bed -fo test.fa.out -soft

$ cat test.fa.out
>chr1
AAAAAaaaccCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

58 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

-mc Specify a masking character.

Using the -mc option, one can optionally choose a masking character to each base that will be masked by the BED
file.

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ bedtools maskfasta -fi test.fa -bed test.bed -fo test.fa.out -mc X

$ cat test.fa.out
>chr1
AAAAAXXXXXCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

merge

bedtools merge combines overlapping or “book-ended” features in an interval file into a single feature which
spans all of the combined features.

1.5. The BEDTools suite 59

Bedtools Documentation, Release 2.17.0

Note: bedtools merge requires that you presort your data by chromosome and then by start position (e.g., sort
k1,1 -k2,2n in.bed > in.sorted.bed for BED files).

See Also:

cluster complement

Usage and option summary

Usage:

bedtools merge [OPTIONS] -i <BED/GFF/VCF>

(or):

mergeBed [OPTIONS] -i <BED/GFF/VCF>

Option Description
-s Force strandedness. That is, only merge features that are

the same strand. By default, this is disabled.
-n Report the number of BED entries that were merged. 1

is reported if no merging occurred.
-d Maximum distance between features allowed for fea-

tures to be merged. Default is 0. That is, overlapping
and/or book-ended features are merged.

-nms Report the names of the merged features separated by
semicolons.

-scores

Report the scores of the merged features. Specify one
of | the following options for reporting scores: | sum,
min, max, | mean, median, mode, antimode, | collapse
(i.e., print a semicolon-separated list)

Default behavior

By default, bedtools merge combines overlapping (by at least 1 bp) and/or bookended intervals into a single,
“flattened” or “merged” interval.

$ cat A.bed
chr1 100 200
chr1 180 250
chr1 250 500
chr1 501 1000

$ bedtools merge -i A.bed
chr1 100 500
chr1 501 1000

-s Enforcing “strandedness”

The -s option will only merge intervals that are overlapping/bookended and are on the same strand.

60 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 100 200 a1 1 +
chr1 180 250 a2 2 +
chr1 250 500 a3 3 -
chr1 501 1000 a4 4 +

$ bedtools merge -i A.bed -s
chr1 100 250 +
chr1 501 1000 +
chr1 250 500 -

-n Reporting the number of features that were merged

The -n option will report the number of features that were combined from the original file in order to make the newly
merged feature. If a feature in the original file was not merged with any other features, a “1” is reported.

$ cat A.bed
chr1 100 200
chr1 180 250
chr1 250 500
chr1 501 1000

$ bedtools merge -i A.bed -n
chr1 100 500 3
chr1 501 1000 1

-d Controlling how close two features must be in order to merge

By default, only overlapping or book-ended features are combined into a new feature. However, one can force merge
to combine more distant features with the -d option. For example, were one to set -d to 1000, any features that
overlap or are within 1000 base pairs of one another will be combined.

$ cat A.bed
chr1 100 200
chr1 501 1000

$ bedtools merge -i A.bed
chr1 100 200
chr1 501 1000

$ bedtools merge -i A.bed -d 1000
chr1 100 200 1000

-nms Reporting the names of the features that were merged

Occasionally, one might like to know that names of the features that were merged into a new feature. The -nms option
will add an extra column to the merge output which lists (separated by semicolons) the names of the merged features.

$ cat A.bed
chr1 100 200 A1
chr1 150 300 A2
chr1 250 500 A3

1.5. The BEDTools suite 61

Bedtools Documentation, Release 2.17.0

$ bedtools merge -i A.bed -nms
chr1 100 500 A1;A2;A3

-scores Reporting the scores of the features that were merged

Similarly, we might like to know that scores of the features that were merged into a new feature. Enter the -scores
option. One can specify how the scores from each overlapping interval should be reported.

$ cat A.bed
chr1 100 200 A1 1
chr1 150 300 A2 2
chr1 250 500 A3 3

$ bedtools merge -i A.bed -scores mean
chr1 100 500 2

$ bedtools merge -i A.bed -scores max
chr1 100 500 3

$ bedtools merge -i A.bed -scores collapse
chr1 100 500 1,2,3

multicov

bedtools multicov, reports the count of alignments from multiple position-sorted and indexed BAM files that
overlap intervals in a BED file. Specifically, for each BED interval provided, it reports a separate count of overlapping
alignments from each BAM file.

Note: bedtools multicov depends upon index BAM files in order to count the number of overlaps in each
BAM file. As such, each BAM file should be position sorted (samtool sort aln.bam aln.sort) and indexed
(samtools index aln.sort.bam) with either samtools or bamtools.

Usage and option summary

Usage:

bedtools multicov [OPTIONS] -bams BAM1 BAM2 BAM3 ... BAMn -bed <BED/GFF/VCF>

(or):

multiBamCov [OPTIONS] -bams BAM1 BAM2 BAM3 ... BAMn -bed <BED/GFF/VCF>

62 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Op-
tion

Description

-split Treat “split” BAM or BED12 entries as distinct BED intervals.
-s Require same strandedness. That is, only report hits in B that overlap A on the _same_ strand. By default,

overlaps are reported without respect to strand.
-S Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By

default, overlaps are reported without respect to strand.
-f Minimum overlap required as a fraction of each A. Default is 1E-9 (i.e., 1bp).
-r Require that the fraction overlap be reciprocal for A and B. In other words, if -f is 0.90 and -r is used, this

requires that B overlap 90% of A and A _also_ overlaps 90% of B.
-q Minimum mapping quality (MAPQ) allowed. Default is 0.
-D Include duplicate reads. Default counts non-duplicates only
-F Include failed-QC reads. Default counts pass-QC reads only
-p Only count proper pairs. Default counts all alignments with MAPQ > -q argument, regardless of the

BAM FLAG field.

Default behavior.

By default, multicov will report the count of alignments in each input BAM file that overlap.

$ cat ivls-of-interest.bed
chr1 0 10000 ivl1
chr1 10000 20000 ivl2
chr1 20000 30000 ivl3
chr1 30000 40000 ivl4

$ bedtools multicov -bams aln1.bam aln2.bam aln3.bam -bed ivls-of-interest.bed
chr1 0 10000 ivl1 100 2234 0
chr1 10000 20000 ivl2 123 3245 1000
chr1 20000 30000 ivl3 213 2332 2034
chr1 30000 40000 ivl4 335 7654 0

The output of multicov reflects a distinct report of the overlapping alignments for each record in the -bed file. In
the example above, each line of the output reflects a) the original line from the -bed file followed by b) the count
of alignments that overlap the -bed interval from each input -bam file. In the example above, the output consists
of 7 columns: the first four of which are the columns from the -bed file and the last 3 are the count of overlapping
alignments from the 3 input -bam files. The order of the counts reflects the order of the files given on the command
line.

Note: bedtools multicov will work with a single BAM as well.

$ bedtools multicov -bams aln1.bam -bed ivls-of-interest.bed
chr1 0 10000 ivl1 100
chr1 10000 20000 ivl2 123
chr1 20000 30000 ivl3 213
chr1 30000 40000 ivl4 335

1.5. The BEDTools suite 63

Bedtools Documentation, Release 2.17.0

multiinter

nuc

overlap

overlap computes the amount of overlap (in the case of positive values) or distance (in the case of negative values)
between feature coordinates occurring on the same input line and reports the result at the end of the same line. In this
way, it is a useful method for computing custom overlap scores from the output of other BEDTools.

Usage and option summary

Usage:

overlap [OPTIONS] -i <input> -cols s1,e1,s2,e2

Op-
tion

Description

-i Input file. Use “stdin” for pipes.
-cols Specify the columns (1-based) for the starts and ends of the features for which you’d like to compute the

overlap/distance. The columns must be listed in the following order: start1,end1,start2,end2

Default behavior

The default behavior is to compute the amount of overlap between the features you specify based on the start and end
coordinates. For example:

windowBed -a A.bed -b B.bed -w 10
chr1 10 20 A chr1 15 25 B
chr1 10 20 C chr1 25 35 D

Now let’s say we want to compute the number of base pairs of overlap # between the overlapping features from the
output of windowBed.

windowBed -a A.bed -b B.bed -w 10 | overlap -i stdin -cols 2,3,6,7
chr1 10 20 A chr1 15 25 B 5
chr1 10 20 C chr1 25 35 D -5

pairtobed

pairtopair

pairToPair compares two BEDPE files in search of overlaps where each end of a BEDPE feature in A overlaps with
the ends of a feature in B. For example, using pairToPair, one could screen for the exact same discordant paired-end
alignment in two files. This could suggest (among other things) that the discordant pair suggests the same structural
variation in each file/sample.

Usage and option summary

Usage:

64 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

pairToPair [OPTIONS] -a <BEDPE> -b <BEDPE>

Option Description
-a BEDPE file A. Each feature in A is compared to B in

search of overlaps. Use “stdin” if passing A with a
UNIX pipe.

-b BEDPE file B. Use “stdin” if passing B with a UNIX
pipe.

-f Minimum overlap required as a fraction of A. Default is
1E-9 (i.e. 1bp).

-is Force “strandedness”. That is, only report hits in B that
overlap A on the same strand. By default, overlaps are
reported without respect to strand.

-type
Approach to reporting overlaps between
BEDPE and BED.

either Report overlaps if either ends of A overlap B.

neither Report A if neither end of A
overlaps B.

both Report overlaps if both ends of A
overlap B. -Default behavior.

Default behavior

By default, a BEDPE feature from A will be reported if both ends overlap a feature in the BEDPE B file. If strand
information is present for the two BEDPE files, it will be further required that the overlaps on each end be on the same
strand. This way, an otherwise overlapping (in terms of genomic locations) F/R alignment will not be matched with a
R/R alignment.

Default: Report A if both ends overlaps B.

Chromosome ~~

BEDPE/BAM A *****.................................*****

BED File B ^^^^^^^^ ^^^^^^

Result =====.................................=====

Default when strand information is present in both BEDPE files: Report A if both ends overlaps B on the same strands.

Chromosome ~~

BEDPE A >>>>>.................................>>>>>

BEDPE B <<<<<.............................>>>>>

Result

BEDPE A >>>>>.................................>>>>>

1.5. The BEDTools suite 65

Bedtools Documentation, Release 2.17.0

BEDPE B >>>>>.............................>>>>>

Result >>>>>.................................>>>>>

-type neither Optional overlap requirements

Using then -type neither, pairToPair will only report A if neither end overlaps with a BEDPE feature in B.

-type neither: Report A only if neither end overlaps B.

Chromosome ~~

BEDPE/BAM A *****.................................*****

BED File B ^^^^^^^^......................................^^^^^^

Result

BEDPE/BAM A *****.................................*****

BED File B ^^^^..^^^^^^

Result =====.................................=====

random

66 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

bedtools random will generate a random set of intervals in BED6 format. One can specify both the number (-n) and
the size (-l) of the intervals that should be generated.

See Also:

shuffle jaccard

Usage and option summary

Usage:

bedtools random [OPTIONS] -g <GENOME>

(or):

randomBed [OPTIONS] -g <GENOME>

1.5. The BEDTools suite 67

Bedtools Documentation, Release 2.17.0

Option Description
-l

The length of the intervals to generate.
Default = 100

-n

The number of intervals to generate.
Default = 1,000,000

-seed Supply an integer seed for the shuffling. This will allow
feature shuffling experiments to be recreated exactly as
the seed for the pseudo-random number generation will
be constant. By default, the seed is chosen automati-
cally.

Default behavior

By default, bedtools random generate 1 million intervals of length 100 placed randomly in the genome specificed with
-g.

$ bedtools random -g hg19.genome
chr2 87536758 87536858 1 100 -
chrX 46051735 46051835 2 100 +
chr18 5237041 5237141 3 100 -
chr12 45809998 45810098 4 100 +
chrX 42034890 42034990 5 100 -
chr10 77510935 77511035 6 100 -
chr3 39844278 39844378 7 100 -
chr6 101012700 101012800 8 100 +
chr12 38123482 38123582 9 100 +
chr7 88508598 88508698 10 100 -

$ bedtools random -g hg19.genome
chr3 141987850 141987950 1 100 +
chr5 137643331 137643431 2 100 +
chr2 155523858 155523958 3 100 -
chr5 147874094 147874194 4 100 +
chr1 71838335 71838435 5 100 -
chr8 71154323 71154423 6 100 -
chr2 133240474 133240574 7 100 +
chr9 131495427 131495527 8 100 +
chrX 125952943 125953043 9 100 +
chr3 59685545 59685645 10 100 +

-n Specify the number of intervals to generate.

The -n option allows one to override the default of generating 1 million intervals.

$ bedtools random -g hg19.genome -n 3
chr20 47975280 47975380 1 100 -
chr16 23381222 23381322 2 100 +
chr3 104913816 104913916 3 100 -

68 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

-l Specify the length of intervals to generate.

The -l option allows one to override the default interval length of 100bp.

$ bedtools random -g hg19.genome -l 5
chr9 54133731 54133736 1 5 +
chr1 235288830 235288835 2 5 -
chr8 26744718 26744723 3 5 +
chr3 187313616 187313621 4 5 -
chr11 88996846 88996851 5 5 -
chr13 84714855 84714860 6 5 -
chr13 10759738 10759743 7 5 -
chr6 122569739 122569744 8 5 +
chr17 50884025 50884030 9 5 -
chr11 38576901 38576906 10 5 +

-seed Defining a “seed” for the random interval creation.

bedtools random uses a pseudo-random number generator to permute the locations of BED features. Therefore, each
run should produce a different result. This can be problematic if one wants to exactly recreate an experiment. By
using the seed option, one can supply a custom integer seed for bedtools random. In turn, each execution of bedtools
random with the same seed and input files should produce identical results.

$ bedtools random -g hg19.genome -seed 71346
chrY 23380696 23380796 1 100 -
chr14 94368315 94368415 2 100 +
chr14 45353323 45353423 3 100 -
chr14 100546766 100546866 4 100 -
chr12 43294368 43294468 5 100 -
chr1 141470585 141470685 6 100 -
chr10 31273665 31273765 7 100 +
chr5 19102979 19103079 8 100 +
chr3 116730634 116730734 9 100 -
chr3 101222965 101223065 10 100 -

(same seed, thus same as above)
$ bedtools random -g hg19.genome -seed 71346
chrY 23380696 23380796 1 100 -
chr14 94368315 94368415 2 100 +
chr14 45353323 45353423 3 100 -
chr14 100546766 100546866 4 100 -
chr12 43294368 43294468 5 100 -
chr1 141470585 141470685 6 100 -
chr10 31273665 31273765 7 100 +
chr5 19102979 19103079 8 100 +
chr3 116730634 116730734 9 100 -
chr3 101222965 101223065 10 100 -

shuffle

1.5. The BEDTools suite 69

Bedtools Documentation, Release 2.17.0

bedtools shuffle will randomly permute the genomic locations of a feature file among a genome defined in a genome
file. One can also provide an “exclusions” BED/GFF/VCF file that lists regions where you do not want the permuted
features to be placed. For example, one might want to prevent features from being placed in known genome gaps.
shuffle is useful as a null basis against which to test the significance of associations of one feature with another.

See Also:

random jaccard

Usage and option summary

Usage:

bedtools shuffle [OPTIONS] -i <BED/GFF/VCF> -g <GENOME>

(or):

shuffleBed [OPTIONS] -i <BED/GFF/VCF> -g <GENOME>

70 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Op-
tion

Description

-excl A BED file of coordinates in which features from -i should not be placed (e.g., genome gaps).
-incl A BED file of coordinates in which features from -i should be placed.
-chrom Keep features in -i on the same chromosome. Solely permute their location on the chromosome. By

default, both the chromosome and position are randomly chosen.
-seed Supply an integer seed for the shuffling. This will allow feature shuffling experiments to be recreated

exactly as the seed for the pseudo-random number generation will be constant. By default, the seed is
chosen automatically.

-f Maximum overlap (as a fraction of the -i feature) with an -excl feature that is tolerated before
searching for a new, randomized locus.

-
chromFirst

Instead of choosing a position randomly among the entire genome (the default), first choose a chrom
randomly, and then choose a random start coordinate on that chrom. This leads to features being
~uniformly distributed among the chroms, as opposed to features being distribute as a function of
chrom size.

-bedpe Indicate that the A file is in BEDPE format.
-
maxTries

Max. number of attempts to find a home for a shuffled interval in the presence of -incl or -excl. Default
= 1000.

Default behavior

By default, bedtools shuffle will reposition each feature in the input BED file on a random chromosome at a random
position. The size and strand of each feature are preserved.

For example:

$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000
chr2 8000
chr3 5000
chr4 2000

$ bedtools shuffle -i A.bed -g my.genome
chr4 1498 1598 a1 1 +
chr3 2156 3156 a2 2 -

-chrom Requiring that features be shuffled on the same chromosome

The -chrom option behaves the same as the default behavior except that features are randomly placed on the same
chromosome as defined in the BED file.

$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000
chr2 8000
chr3 5000
chr4 2000

1.5. The BEDTools suite 71

Bedtools Documentation, Release 2.17.0

$ bedtools shuffle -i A.bed -g my.genome -chrom
chr1 9560 9660 a1 1 +
chr1 7258 8258 a2 2 -

-excl Excluding certain genome regions from bedtools shuffle

One may want to prevent BED features from being placed in certain regions of the genome. For example, one may want
to exclude genome gaps from permutation experiment. The excl option defines a BED file of regions that should be
excluded. bedtools shuffle will attempt to permute the locations of all features while adhering to the exclusion
rules. However it will stop looking for an appropriate location if it cannot find a valid spot for a feature after 1,000,000
tries.

For example (note that the exclude file excludes all but 100 base pairs of the chromosome):

$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ cat exclude.bed
chr1 100 10000

$ bedtools shuffle -i A.bed -g my.genome -excl exclude.bed
chr1 0 100 a1 1 +
Error, line 2: tried 1000000 potential loci for entry, but could not avoid excluded
regions. Ignoring entry and moving on.

For example (now the exclusion file only excludes the first 100 bases of the chromosome):

$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ cat exclude.bed
chr1 0 100

$ bedtools shuffle -i A.bed -g my.genome -excl exclude.bed
chr1 147 247 a1 1 +
chr1 2441 3441 a2 2 -

-seed Defining a “seed” for the random replacement.

bedtools shuffle uses a pseudo-random number generator to permute the locations of BED features. Therefore, each
run should produce a different result. This can be problematic if one wants to exactly recreate an experiment. By using
the seed option, one can supply a custom integer seed for bedtools shuffle. In turn, each execution of bedtools shuffle
with the same seed and input files should produce identical results.

For example (note that the exclude file below excludes all but 100 base pairs of the chromosome):

72 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ bedtools shuffle -i A.bed -g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

$ bedtools shuffle -i A.bed -g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

. . .

$ bedtools shuffle -i A.bed -g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

slop

1.5. The BEDTools suite 73

Bedtools Documentation, Release 2.17.0

bedtools slop will increase the size of each feature in a feature file be a user-defined number of bases.
While something like this could be done with an awk ’{OFS="\t" print $1,$2-<slop>,$3+<slop>}’,
bedtools slop will restrict the resizing to the size of the chromosome (i.e. no start < 0 and no end > chromosome
size).

Note: In order to prevent the extension of intervals beyond chromosome boundaries, bedtools slop requires a
genome file defining the length of each chromosome or contig.

Usage and option summary

Usage:

bedtools slop [OPTIONS] -i <BED/GFF/VCF> -g <GENOME> [-b or (-l and -r)]

(or):

bedtools slop [OPTIONS] -i <BED/GFF/VCF> -g <GENOME> [-b or (-l and -r)]

Op-
tion

Description

-b Increase the BED/GFF/VCF entry by the same number base pairs in each direction. Integer.
-l The number of base pairs to subtract from the start coordinate. Integer.
-r The number of base pairs to add to the end coordinate. Integer.
-s Define -l and -r based on strand. For example. if used, -l 500 for a negative-stranded feature, it will add

500 bp to the end coordinate.
-pct Define -l and -r as a fraction of the feature’s length. E.g. if used on a 1000bp feature, -l 0.50, will add

500 bp “upstream”. Default = false.
-
header

Print the header from the input file prior to results.

Default behavior

By default, bedtools slopwill either add a fixed number of bases in each direction (-b) or an asymmetric number
of bases in each direction with -l and -r.

$ cat A.bed
chr1 5 100
chr1 800 980

$ cat my.genome
chr1 1000

$ bedtools slop -i A.bed -g my.genome -b 5
chr1 0 105
chr1 795 985

$ bedtools slop -i A.bed -g my.genome -l 2 -r 3
chr1 3 103
chr1 798 983

However, if the requested number of bases exceeds the boundaries of the chromosome, bedtools slop will “clip”
the feature accordingly.

74 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 5 100
chr1 800 980

$ cat my.genome
chr1 1000

$ bedtools slop -i A.bed -g my.genome -b 5000
chr1 0 1000
chr1 0 1000

-s Resizing features according to strand

bedtools slop will optionally increase the size of a feature based on strand.

For example:

$ cat A.bed
chr1 100 200 a1 1 +
chr1 100 200 a2 2 -

$ cat my.genome
chr1 1000

$ bedtools slop -i A.bed -g my.genome -l 50 -r 80 -s
chr1 50 280 a1 1 +
chr1 20 250 a2 2 -

-pct Resizing features by a given fraction

bedtools slop will optionally increase the size of a feature by a user-specific fraction.

For example:

$ cat A.bed
chr1 100 200 a1 1 +

$ bedtools slop -i A.bed -g my.genome -b 0.5 -pct
chr1 50 250 a1 1 +

$ bedtools slop -i a.bed -l 0.5 -r 0.0 -pct -g my.genome
chr1 50 200 a1 1 +

-header Print the header for the A file before reporting results.

By default, if your A file has a header, it is ignored when reporting results. This option will instead tell bedtools to
first print the header for the A file prior to reporting results.

sort

sortBed sorts a feature file by chromosome and other criteria.

1.5. The BEDTools suite 75

Bedtools Documentation, Release 2.17.0

Usage and option summary

Usage:

sortBed [OPTIONS] -i <BED/GFF/VCF>

Option Description
-sizeA Sort by feature size in ascending order.
-sizeD Sort by feature size in descending order.
-chrThenSizeA Sort by chromosome, then by feature size (asc).
-chrThenSizeD Sort by chromosome, then by feature size (desc).
-chrThenScoreA Sort by chromosome, then by score (asc).
-chrThenScoreD Sort by chromosome, then by score (desc).

Default behavior

By default, sortBed sorts a BED file by chromosome and then by start position in ascending order.

For example:

cat A.bed
chr1 800 1000
chr1 80 180
chr1 1 10
chr1 750 10000

sortBed -i A.bed
chr1 1 10
chr1 80 180
chr1 750 10000
chr1 800 1000

Optional sorting behavior

sortBed will also sorts a BED file by chromosome and then by other criteria.

For example, to sort by chromosome and then by feature size (in descending order):

cat A.bed
chr1 800 1000
chr1 80 180
chr1 1 10
chr1 750 10000

sortBed -i A.bed -sizeD
chr1 750 10000
chr1 800 1000
chr1 80 180
chr1 1 10

Disclaimer: it should be noted that sortBed is merely a convenience utility, as the UNIX sort utility will sort BED
files more quickly while using less memory. For example, UNIX sort will sort a BED file by chromosome then by
start position in the following manner:

sort -k 1,1 -k2,2 -n a.bed
chr1 1 10

76 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

chr1 80 180
chr1 750 10000
chr1 800 1000

subtract

bedtools subtract searches for features in B that overlap A. If an overlapping feature is found in B, the over-
lapping portion is removed from A and the remaining portion of A is reported. If a feature in B overlaps all of a feature
in A, the A feature will not be reported.

Usage and option summary

Usage:

bedtools subtract [OPTIONS] -a <BED/GFF/VCF> -b <BED/GFF/VCF>

(or):

subtractBed [OPTIONS] -a <BED/GFF/VCF> -b <BED/GFF/VCF>

1.5. The BEDTools suite 77

Bedtools Documentation, Release 2.17.0

Op-
tion

Description

-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-s Force “strandedness”. That is, only report hits in B that overlap A on the same strand. By default,

overlaps are reported without respect to strand.
-S Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By

default, overlaps are reported without respect to strand.
-A Remove entire feature if any overlap. That is, by default, only subtract the portion of A that overlaps B.

Here, if any overlap is found (or -f amount), the entire feature is removed.

Default behavior

By default, bedtools subtracts removes each overlapping interval in B from A. If a feature in B completely
overlaps a feature in A, the A feature is removed.

$ cat A.bed
chr1 10 20
chr1 100 200

$ cat B.bed
chr1 0 30
chr1 180 300

$ bedtools subtract -a A.bed -b B.bed
chr1 100 180

-f Requiring a minimal overlap fraction before subtracting

This option behaves the same as the -f option for bedtools intersect. In this case, subtract will only
subtract an overlap with B if it covers at least the fraction of A defined by -f. If an overlap is found, but it does not
meet the overlap fraction, the original A feature is reported without subtraction.

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 180 300

$ bedtools subtract -a A.bed -b B.bed -f 0.10
chr1 100 180

$ bedtools subtract -a A.bed -b B.bed -f 0.80
chr1 100 200

-s Enforcing same “strandedness”

This option behaves the same as the -s option for bedtools intersect while scanning for features in B that
should be subtracted from A.

$ cat A.bed
chr1 100 200 a1 1 +

$ cat B.bed
chr1 80 120 b1 1 +

78 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

chr1 180 300 b2 1 -

$ bedtools subtract -a A.bed -b B.bed -s
chr1 120 120 a1 1 +

-S Enforcing opposite “strandedness”

This option behaves the same as the -s option for bedtools intersect while scanning for features in B that
should be subtracted from A.

$ cat A.bed
chr1 100 200 a1 1 +

$ cat B.bed
chr1 80 120 b1 1 +
chr1 180 300 b2 1 -

$ bedtools subtract -a A.bed -b B.bed -S
chr1 100 180 a1 1 +

-A Remove features with any overlap

Unlike the default behavior, the -A option will completely remove a feature from A if it has even 1bp of overlap with
a feature in B.

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 180 300

$ bedtools subtract -a A.bed -b B.bed
chr1 100 180

$ bedtools subtract -a A.bed -b B.bed -A

tag

unionbedg

unionBedGraphs combines multiple BEDGRAPH files into a single file such that one can directly compare coverage
(and other text-values such as genotypes) across multiple sample

Usage and option summary

Usage:

unionBedGraphs [OPTIONS] -i FILE1 FILE2 FILE3 ... FILEn

1.5. The BEDTools suite 79

Bedtools Documentation, Release 2.17.0

Option Description
-header Print a header line, consisting of chrom, start, end followed by the names of each input

BEDGRAPH file.
-names A list of names (one per file) to describe each file in -i. These names will be printed in the header

line.
-empty Report empty regions (i.e., start/end intervals w/o values in all files). Requires the ‘-g FILE’

parameter (see below).
-g The genome file to be used to calculate empty regions.
-filler
TEXT

Use TEXT when representing intervals having no value. Default is ‘0’, but you can use ‘N/A’ or
any other text.

-examples Show detailed usage examples.

Default behavior

Figure:

cat 1.bg
chr1 1000 1500 10
chr1 2000 2100 20

cat 2.bg
chr1 900 1600 60
chr1 1700 2050 50

cat 3.bg
chr1 1980 2070 80
chr1 2090 2100 20

cat sizes.txt
chr1 5000

unionBedGraphs -i 1.bg 2.bg 3.bg
chr1 900 1000 0 60 0
chr1 1000 1500 10 60 0
chr1 1500 1600 0 60 0
chr1 1700 1980 0 50 0
chr1 1980 2000 0 50 80
chr1 2000 2050 20 50 80
chr1 2050 2070 20 0 80
chr1 2070 2090 20 0 0
chr1 2090 2100 20 0 20

-header Add a header line to the output

Figure:

unionBedGraphs -i 1.bg 2.bg 3.bg -header
chrom start end 1 2 3
chr1 900 1000 0 60 0
chr1 1000 1500 10 60 0
chr1 1500 1600 0 60 0
chr1 1700 1980 0 50 0
chr1 1980 2000 0 50 80
chr1 2000 2050 20 50 80
chr1 2050 2070 20 0 80

80 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

chr1 2070 2090 20 0 0
chr1 2090 2100 20 0 20

-names Add a header line with custom file names to the output

Figure:

unionBedGraphs -i 1.bg 2.bg 3.bg -header -names WT-1 WT-2 KO-1
chrom start end WT-1 WT-2 KO-1
chr1 900 1000 0 60 0
chr1 1000 1500 10 60 0
chr1 1500 1600 0 60 0
chr1 1700 1980 0 50 0
chr1 1980 2000 0 50 80
chr1 2000 2050 20 50 80
chr1 2050 2070 20 0 80
chr1 2070 2090 20 0 0
chr1 2090 2100 20 0 20

-empty Include regions that have zero coverage in all BEDGRAPH files.

Figure:

unionBedGraphs -i 1.bg 2.bg 3.bg -empty -g sizes.txt -header
chrom start end WT-1 WT-2 KO-1
chrom start end 1 2 3
chr1 0 900 0 0 0
chr1 900 1000 0 60 0
chr1 1000 1500 10 60 0
chr1 1500 1600 0 60 0
chr1 1600 1700 0 0 0
chr1 1700 1980 0 50 0
chr1 1980 2000 0 50 80
chr1 2000 2050 20 50 80
chr1 2050 2070 20 0 80
chr1 2070 2090 20 0 0
chr1 2090 2100 20 0 20
chr1 2100 5000 0 0 0

-filler Use a custom value for missing values.

Figure:

unionBedGraphs -i 1.bg 2.bg 3.bg -empty -g sizes.txt -header -filler N/A
chrom start end WT-1 WT-2 KO-1
chrom start end 1 2 3
chr1 0 900 N/A N/A N/A
chr1 900 1000 N/A 60 N/A
chr1 1000 1500 10 60 N/A
chr1 1500 1600 N/A 60 N/A
chr1 1600 1700 N/A N/A N/A
chr1 1700 1980 N/A 50 N/A
chr1 1980 2000 N/A 50 80
chr1 2000 2050 20 50 80

1.5. The BEDTools suite 81

Bedtools Documentation, Release 2.17.0

chr1 2050 2070 20 N/A 80
chr1 2070 2090 20 N/A N/A
chr1 2090 2100 20 N/A 20
chr1 2100 5000 N/A N/A N/A

Use BEDGRAPH files with non-numeric values.

Figure:

cat 1.snp.bg
chr1 0 1 A/G
chr1 5 6 C/T

cat 2.snp.bg
chr1 0 1 C/C
chr1 7 8 T/T

cat 3.snp.bg
chr1 0 1 A/G
chr1 5 6 C/T

unionBedGraphs -i 1.snp.bg 2.snp.bg 3.snp.bg -filler -/-
chr1 0 1 A/G C/C A/G
chr1 5 6 C/T -/- C/T
chr1 7 8 -/- T/T -/-

window

82 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

Similar to bedtools intersect, window searches for overlapping features in A and B. However, window adds
a specified number (1000, by default) of base pairs upstream and downstream of each feature in A. In effect, this allows
features in B that are “near” features in A to be detected.

Usage and option summary

Usage:

bedtools window [OPTIONS] [-a|-abam] -b <BED/GFF/VCF>

(or):

bedtools window [OPTIONS] [-a|-abam] -b <BED/GFF/VCF>

1.5. The BEDTools suite 83

Bedtools Documentation, Release 2.17.0

Op-
tion

Description

-
abam

BAM file A. Each BAM alignment in A is compared to B in search of overlaps. Use “stdin” if passing A
with a UNIX pipe: For example: samtools view -b <BAM> | bedtools window -abam stdin -b genes.bed

-
ubam

Write uncompressed BAM output. The default is write compressed BAM output.

-bed When using BAM input (-abam), write output as BED. The default is to write output in BAM when using
-abam. For example: bedtools window -abam reads.bam -b genes.bed -bed

-w Base pairs added upstream and downstream of each entry in A when searching for overlaps in B. Default
is 1000 bp.

-l Base pairs added upstream (left of) of each entry in A when searching for overlaps in B. Allows one to
create assymetrical “windows”. Default is 1000bp.

-r Base pairs added downstream (right of) of each entry in A when searching for overlaps in B. Allows one
to create assymetrical “windows”. Default is 1000bp.

-sw Define -l and -r based on strand. For example if used, -l 500 for a negative-stranded feature will add 500
bp downstream. By default, this is disabled.

-sm Only report hits in B that overlap A on the same strand. By default, overlaps are reported without respect
to strand.

-Sm Only report hits in B that overlap A on the same strand. By default, overlaps are reported without respect
to strand.

-u Write original A entry once if any overlaps found in B. In other words, just report the fact at least one
overlap was found in B.

-c For each entry in A, report the number of hits in B while restricting to -f. Reports 0 for A entries that have
no overlap with B.

-v Only report those entries in A that have no overlaps with B.
-
header

Print the header from the A file prior to results.

Default behavior

By default, bedtools window adds 1000 bp upstream and downstream of each A feature and searches for features
in B that overlap this “window”. If an overlap is found in B, both the original A feature and the original B feature are
reported.

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 500 1000
chr1 1300 2000

$ bedtools window -a A.bed -b B.bed
chr1 100 200 chr1 500 1000

-w Defining a custom window size

Instead of using the default window size of 1000bp, one can define a custom, symmetric window around each feature
in A using the -w option. One should specify the window size in base pairs. For example, a window of 5kb should be
defined as -w 5000.

For example (note that in contrast to the default behavior, the second B entry is reported):

84 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 500 1000
chr1 1300 2000

$ bedtools window -a A.bed -b B.bed -w 5000
chr1 100 200 chr1 500 1000
chr1 100 200 chr1 1300 2000

-l and -r Defining assymteric windows

One can also define asymmetric windows where a differing number of bases are added upstream and downstream of
each feature using the -l (upstream) and -r (downstream)** options.

Note: By default, the -l and -r options ignore. If you want to define upstream and downstream based on strand,
use the -sw option (below) with the -l and -r options.

For example (note the difference between -l 200 and -l 300):

$ cat A.bed
chr1 1000 2000

$ cat B.bed
chr1 500 800
chr1 10000 20000

$ bedtools window -a A.bed -b B.bed -l 200 -r 20000
chr1 100 200 chr1 10000 20000

$ bedtools window -a A.bed -b B.bed -l 300 -r 20000
chr1 100 200 chr1 500 800
chr1 100 200 chr1 10000 20000

-sw Defining assymteric windows based on strand

Especially when dealing with gene annotations or RNA-seq experiments, you may want to define asymmetric windows
based on “strand”. For example, you may want to screen for overlaps that occur within 5000 bp upstream of a gene
(e.g. a promoter region) while screening only 1000 bp downstream of the gene. By enabling the -sw (“stranded”
windows) option, the windows are added upstream or downstream according to strand. For example, imagine one
specifies -l 5000, -r 1000 as well as the -sw option. In this case, forward stranded (“+”) features will screen
5000 bp to the left (that is, lower genomic coordinates) and 1000 bp to the right (that is, higher genomic coordinates).
By contrast, reverse stranded (“-”) features will screen 5000 bp to the right (that is, higher genomic coordinates) and
1000 bp to the left (that is, lower genomic coordinates).

For example (note the difference between -l 200 and -l 300):

$ cat A.bed
chr1 10000 20000 A.forward 1 +
chr1 10000 20000 A.reverse 1 -

$ cat B.bed
chr1 1000 8000 B1

1.5. The BEDTools suite 85

Bedtools Documentation, Release 2.17.0

chr1 24000 32000 B2

$ bedtools window -a A.bed -b B.bed -l 5000 -r 1000 -sw
chr1 10000 20000 A.forward 1 + chr1 1000 8000 B1
chr1 10000 20000 A.reverse 1 - chr1 24000 32000 B2

-sm Enforcing matches with the same “strandedness”

This option behaves the same as the -s option for bedtools intersect while scanning for overlaps within the
“window” surrounding A. That is, overlaps in B will only be included if the B interval is on the same strand as the A
interval.

-Sm Enforcing matches with the same “strandedness”

This option behaves the same as the -S option for bedtools intersect while scanning for overlaps within the
“window” surrounding A. That is, overlaps in B will only be included if the B interval is on the opposite strand as the
A interval.

-u Reporting the presence/absence of at least one overlapping feature

This option behaves the same as for bedtools intersect. That is, even if multiple overlaps exist, each A interval
will only be reported once.

-c Reporting the number of overlapping features

This option behaves the same as for bedtools intersect. That is, it will report the count of intervals in B that
overlap each A interval.

-v Reporting the absence of any overlapping features

This option behaves the same as for bedtools intersect. That is, it will only report those intervals in A that
have have zero overlaps in B.

-header Print the header for the A file before reporting results.

By default, if your A file has a header, it is ignored when reporting results. This option will instead tell bedtools to
first print the header for the A file prior to reporting results.

1.6 Example usage

Below are several examples of basic bedtools usage. Example BED files are provided in the /data directory of the
bedtools distribution.

86 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

1.6.1 bedtools intersect

Report the base-pair overlap between sequence alignments and genes.

bedtools intersect -a reads.bed -b genes.bed

Report whether each alignment overlaps one or more genes. If not, the alignment is not reported.

bedtools intersect -a reads.bed -b genes.bed -u

Report those alignments that overlap NO genes. Like “grep -v”

bedtools intersect -a reads.bed -b genes.bed -v

Report the number of genes that each alignment overlaps.

bedtools intersect -a reads.bed -b genes.bed -c

Report the entire, original alignment entry for each overlap with a gene.

bedtools intersect -a reads.bed -b genes.bed -wa

Report the entire, original gene entry for each overlap with a gene.

bedtools intersect -a reads.bed -b genes.bed -wb

Report the entire, original alignment and gene entries for each overlap.

bedtools intersect -a reads.bed -b genes.bed -wa -wb

Only report an overlap with a repeat if it spans at least 50% of the exon.

bedtools intersect -a exons.bed -b repeatMasker.bed -f 0.50

Only report an overlap if comprises 50% of the structural variant and 50% of the segmental duplication. Thus, it is
reciprocally at least a 50% overlap.

bedtools intersect -a SV.bed -b segmentalDups.bed -f 0.50 -r

Read BED A from stdin. For example, find genes that overlap LINEs but not SINEs.

bedtools intersect -a genes.bed -b LINES.bed | intersectBed -a stdin -b SINEs.bed -v

Retain only single-end BAM alignments that overlap exons.

bedtools intersect -abam reads.bam -b exons.bed > reads.touchingExons.bam

Retain only single-end BAM alignments that do not overlap simple sequence repeats.

bedtools intersect -abam reads.bam -b SSRs.bed -v > reads.noSSRs.bam

1.6.2 bedtools bamtobed

Convert BAM alignments to BED format.

bedtools bamtobed -i reads.bam > reads.bed

Convert BAM alignments to BED format using the BAM edit distance (NM) as the BED “score”.

1.6. Example usage 87

Bedtools Documentation, Release 2.17.0

bedtools bamtobed -i reads.bam -ed > reads.bed

Convert BAM alignments to BEDPE format.

bedtools bamtobed -i reads.bam -bedpe > reads.bedpe

1.6.3 bedtools window

Report all genes that are within 10000 bp upstream or downstream of CNVs.

bedtools window -a CNVs.bed -b genes.bed -w 10000

Report all genes that are within 10000 bp upstream or 5000 bp downstream of CNVs.

bedtools window -a CNVs.bed -b genes.bed -l 10000 -r 5000

Report all SNPs that are within 5000 bp upstream or 1000 bp downstream of genes. Define upstream and downstream
based on strand.

bedtools window -a genes.bed -b snps.bed -l 5000 -r 1000 -sw

1.6.4 bedtools closest

Note: By default, if there is a tie for closest, all ties will be reported. closestBed allows overlapping features to be the
closest.

Find the closest ALU to each gene.

bedtools closest -a genes.bed -b ALUs.bed

Find the closest ALU to each gene, choosing the first ALU in the file if there is a tie.

bedtools closest -a genes.bed -b ALUs.bed -t first

Find the closest ALU to each gene, choosing the last ALU in the file if there is a tie.

bedtools closest -a genes.bed -b ALUs.bed -t last

1.6.5 bedtools subtract

Note: If a feature in A is entirely “spanned” by any feature in B, it will not be reported.

Remove introns from gene features. Exons will (should) be reported.

bedtools subtract -a genes.bed -b introns.bed

1.6.6 bedtools merge

Note: merge requires that the input is sorted by chromosome and then by start coordinate. For example, for BED
files, one would first sort the input as follows: sort -k1,1 -k2,2n input.bed > input.sorted.bed

Merge overlapping repetitive elements into a single entry.

88 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

bedtools merge -i repeatMasker.bed

Merge overlapping repetitive elements into a single entry, returning the number of entries merged.

bedtools merge -i repeatMasker.bed -n

Merge nearby (within 1000 bp) repetitive elements into a single entry.

bedtools merge -i repeatMasker.bed -d 1000

1.6.7 bedtools coverage

Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome.

bedtools coverage -a reads.bed -b windows10kb.bed | head
chr1 0 10000 0 10000 0.00
chr1 10001 20000 33 10000 0.21
chr1 20001 30000 42 10000 0.29
chr1 30001 40000 71 10000 0.36

Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome and created a BED-
GRAPH of the number of aligned reads in each window for display on the UCSC browser.

bedtools coverage -a reads.bed -b windows10kb.bed | cut -f 1-4 > windows10kb.cov.bedg

Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome and created a BED-
GRAPH of the fraction of each window covered by at least one aligned read for display on the UCSC browser.

bedtools coverage -a reads.bed -b windows10kb.bed | \
awk ’{OFS="\t"; print $1,$2,$3,$6}’ \
> windows10kb.pctcov.bedg

1.6.8 bedtools complement

Report all intervals in the human genome that are not covered by repetitive elements.

bedtools complement -i repeatMasker.bed -g hg18.genome

1.6.9 bedtools shuffle

Randomly place all discovered variants in the genome. However, prevent them from being placed in know genome
gaps.

bedtools shuffle -i variants.bed -g hg18.genome -excl genome_gaps.bed

Randomly place all discovered variants in the genome. However, prevent them from being placed in know genome
gaps and require that the variants be randomly placed on the same chromosome.

bedtools shuffle -i variants.bed -g hg18.genome -excl genome_gaps.bed -chrom

1.6. Example usage 89

Bedtools Documentation, Release 2.17.0

1.7 Advanced usage

1.7.1 Mask all regions in a genome except for targeted capture regions.

Step 1. Add 500 bp up and downstream of each probe

bedtools slop -i probes.bed -b 500 > probes.500bp.bed

Step 2. Get a BED file of all regions not covered by the probes (+500 bp up/down)

bedtools complement -i probes.500bp.bed -g hg18.genome > probes.500bp.complement.bed

Step 3. Create a masked genome where all bases are masked except for the probes +500bp

bedtools maskfasta -in hg18.fa -bed probes.500bp.complement.bed -fo \
> hg18.probecomplement.masked.fa

1.7.2 Screening for novel SNPs.

Find all SNPs that are not in dbSnp and not in the latest 1000 genomes calls

bedtools intersect -a snp.calls.bed -b dbSnp.bed -v | \
bedtools intersect -a - -b 1KG.bed -v | \
> snp.calls.novel.bed

1.7.3 Computing the coverage of features that align entirely within an interval.

By default, bedtools coverage counts any feature in A that overlaps B by >= 1 bp. If you want to require that a
feature align entirely within B for it to be counted, you can first use intersectBed with the “-f 1.0” option.

bedtools intersect -a features.bed -b windows.bed -f 1.0 | \
bedtools coverage -a - -b \
> windows.bed.coverage

1.7.4 Computing the coverage of BAM alignments on exons.

One can combine samtools with bedtools to compute coverage directly from the BAM data by using
bamtobed.

bedtools bamtobed -i reads.bam | \
bedtools coverage -a - -b exons.bed \
> exons.bed.coverage

Take it a step further and require that coverage be from properly-paired reads.

samtools view -uf 0x2 reads.bam | \
coverageBed -abam - -b exons.bed \
> exons.bed.proper.coverage

1.7.5 Computing coverage separately for each strand.

Use grep to only look at forward strand features (i.e. those that end in “+”).

90 Chapter 1. Table of contents

Bedtools Documentation, Release 2.17.0

bedtools bamtobed -i reads.bam | \
grep \+$ | \
bedtools coverage -a - -b genes.bed \
> genes.bed.forward.coverage

Use grep to only look at reverse strand features (i.e. those that end in “-”).

bedtools bamtobed -i reads.bam | \
grep \-$ | \
bedtools coverage -a - -b genes.bed \
> genes.bed.reverse.coverage

1.8 Tips and Tricks

1.8.1 The -sorted option

1.9 FAQ

1.9.1 Installation issues

Why am I getting all of these zlib errors?

On certain operating systems (especially free Linux distributions) the complete zlib libraries are not installed. Bedtools
depends upon zlib in order to decompress gzipped files.

- Building main bedtools binary.
obj/gzstream.o: In function gzstreambuf::open(char const*, int):
gzstream.C:(.text+0x2a5): undefined reference to gzopen64’
collect2: ld returned 1 exit status
make: *** [all] Error 1

If you see an error such as the above, it suggests you need to install the zlib and zlib1g-dev libraries. This is
typically straightforward using package managers. For example, on Debian/Ubuntu this would be:

apt-get install zlib
apt-get install zlib1g-dev

and on Fedora/Centos this would be:

yum install zlib
yum install zlib1g-dev

1.9.2 General questions

How do I know what version of bedtools I am using?

Use the –version option.

$ bedtools --version
bedtools v2.17.0

1.8. Tips and Tricks 91

Bedtools Documentation, Release 2.17.0

How do I bring up the help/usage menu?

To receive a high level list of available tools in bedtools, use ‘-h:

$ bedtools -h
bedtools: flexible tools for genome arithmetic and DNA sequence analysis.
usage: bedtools <subcommand> [options]

The bedtools sub-commands include:

[Genome arithmetic]
intersect Find overlapping intervals in various ways.
window Find overlapping intervals within a window around an interval.
closest Find the closest, potentially non-overlapping interval.
coverage Compute the coverage over defined intervals.
map Apply a function to a column for each overlapping interval.
genomecov Compute the coverage over an entire genome.
merge Combine overlapping/nearby intervals into a single interval.
cluster Cluster (but don’t merge) overlapping/nearby intervals.
complement Extract intervals _not_ represented by an interval file.

...

To display the help for a specific tool (e.g., bedtools shuffle), use:

$ bedtools merge -h

Tool: bedtools merge (aka mergeBed)
Version: v2.17.0
Summary: Merges overlapping BED/GFF/VCF entries into a single interval.

Usage: bedtools merge [OPTIONS] -i <bed/gff/vcf>

Options:
-s Force strandedness. That is, only merge features

that are the same strand.
- By default, merging is done without respect to strand.

-n Report the number of BED entries that were merged.
- Note: "1" is reported if no merging occurred.

1.10 Related software

Bedtools has been used as an engine behind other genomics software and has been integrated into widely used tools
such as Galaxy and IGV. Below is a likely incomplete list. If you know of others, please let us know, or better yet,
edit the document on GitHub and send us a pull request. You can do this by clicking on the “Edit and improve this
document” link in the lower lefthand corner.

1.10.1 IGV

Bedtools is now integrated into the IGV genome viewer as of IGV version 2.2. We are actively working withe IGV
development team to improve and expand this integration. See here and here for details.

92 Chapter 1. Table of contents

http://www.broadinstitute.org/igv/IGV2.2.x
https://www.broadinstitute.org/software/igv/bedtools

Bedtools Documentation, Release 2.17.0

1.10.2 Galaxy

Galaxy has its own tools for working with genomic intervals under the “Operate on Genomic Intervals” section. A sub-
set of complementary Bedtools utilities have also been made available on Galaxy in an effort to provide functionality
that isn’t available with the native Galaxy tools.

1.10. Related software 93

https://main.g2.bx.psu.edu/

Bedtools Documentation, Release 2.17.0

1.10.3 Pybedtools

Pybedtools is a really fantastic Python library that wraps (and extends upon) the bedtools utilities and exposes them
for easy use and new tool development using Python. Pybedtools is actively maintained by Ryan Dale.

1.10.4 MISO

MISO is “a probabilistic framework that quantitates the expression level of alternatively spliced genes from RNA-Seq
data, and identifies differentially regulated isoforms or exons across samples.” A subset of the functionality in MISO
depends upon bedtools. MISO is developed by Yarden Katz.

1.10.5 RetroSeq

RetroSeq is “a tool for discovery and genotyping of transposable element variants (TEVs) (also known as mobile
element insertions) from next-gen sequencing reads aligned to a reference genome in BAM format”. RetroSeq is
developed by Thomas Keane. Source code can be obtained on GitHub.

94 Chapter 1. Table of contents

http://pypi.python.org/pypi/pybedtools
http://genes.mit.edu/burgelab/miso/
http://bioinformatics.oxfordjournals.org/content/early/2012/12/10/bioinformatics.bts697.abstract
https://github.com/tk2/RetroSeq

CHAPTER

TWO

BRIEF EXAMPLE

Let’s imagine you have a BED file of ChiP-seq peaks from two different experiments. You want to identify peaks that
were observed in both experiments (requiring 50% reciprocal overlap) and for those peaks, you want to find to find the
closest, non-overlapping gene. Such an analysis could be conducted with two, relatively simple bedtools commands.

intersect the peaks from both experiments.
-f 0.50 combined with -r requires 50% reciprocal overlap between the
peaks from each experiment.
$ bedtools intersect -a exp1.bed -b exp2.bed -f 0.50 -r > both.bed

find the closest, non-overlapping gene for each interval where
both experiments had a peak
-io ignores overlapping intervals and returns only the closest,
non-overlapping interval (in this case, genes)
$ bedtools closest -a both.bed -b genes.bed -io > both.nearest.genes.txt

95

Bedtools Documentation, Release 2.17.0

96 Chapter 2. Brief example

CHAPTER

THREE

LICENSE

bedtools is freely available under a GNU Public License (Version 2).

97

Bedtools Documentation, Release 2.17.0

98 Chapter 3. License

CHAPTER

FOUR

ACKNOWLEDGMENTS

To do.

99

Bedtools Documentation, Release 2.17.0

100 Chapter 4. Acknowledgments

CHAPTER

FIVE

MAILING LIST

If you have questions, requests, or bugs to report, please email the bedtools mailing list

101

https://groups.google.com/forum/?fromgroups#!forum/bedtools-discuss

	Table of contents
	Overview
	Installation
	Quick start
	General usage
	The BEDTools suite
	Example usage
	Advanced usage
	Tips and Tricks
	FAQ
	Related software

	Brief example
	License
	Acknowledgments
	Mailing list

